Suppr超能文献

室温下通过自陷激子态的转变实现荧光化学传感的开启。

Turn-On Fluorescence Chemical Sensing through Transformation of Self-Trapped Exciton States at Room Temperature.

机构信息

Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.

出版信息

ACS Sens. 2022 Aug 26;7(8):2338-2344. doi: 10.1021/acssensors.2c00964. Epub 2022 Aug 10.

Abstract

Most of the current fluorescence sensing materials belong to the turn-off type, which make it hard to detect toxic substances such as benzene, toluene, and xylene (BTX) due to the lack of active chemical sites, thereby limiting their development and practical use. Herein, we show a guest-host mechanism stemming from the confined emitter's self-trapped exciton (STE) states or electron-phonon coupling to achieve turn-on fluorescence. We designed a luminescent guest@metal-organic framework (LG@MOF) composite material, termed perylene@MIL-68(In), and established its E-type excimeric emission properties in the solid state. Upon exposure to BTX, especially xylene, we show that the E-excimer readily converts into the Y-excimer due to nanoconfinement of the MOF structure. Such a transformation elevates the fluorescence intensity, thus realizing a turn-on type fluorescent sensor for detecting BTX solvents. Our results further demonstrate that controlling the STE states of perylene at room temperature (vs the previous report of <50 K) is possible nanoscale confinement, paving the way to enabling turn-on type luminescent sensors for engineering practical applications.

摘要

目前大多数荧光传感材料属于关闭型,由于缺乏活性化学位点,很难检测到苯、甲苯和二甲苯(BTX)等有毒物质,从而限制了它们的发展和实际应用。在这里,我们展示了一种源于受限发射器自陷激子(STE)态或电子-声子耦合的主客体机制,以实现开启型荧光。我们设计了一种发光客体@金属有机骨架(LG@MOF)复合材料,称为苝@MIL-68(In),并在固态中建立了其 E 型激基缔合物发射特性。暴露于 BTX 尤其是二甲苯后,我们表明,由于 MOF 结构的纳米限域作用,E-激基复合物很容易转化为 Y-激基复合物。这种转变提高了荧光强度,从而实现了用于检测 BTX 溶剂的开启型荧光传感器。我们的结果进一步证明,在室温下控制苝的 STE 态(而之前的报告为 <50 K)是可能的,这是通过纳米尺度限域实现的,为用于工程实际应用的开启型发光传感器铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验