Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston 02114, MA, USA.
Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston 02114, MA, USA.
Clin Radiol. 2022 Oct;77(10):e711-e718. doi: 10.1016/j.crad.2022.06.015. Epub 2022 Aug 7.
To assess if radiomic feature analysis could help to differentiate between the lipid-poor adenomas and metastases to the adrenal glands.
Eighty-six patients (women:men 42:44; mean age 66 years) with biopsy-proven adrenal metastases and 55 patients (women:men 39:16; mean age 67 years) with lipid-poor adenomas who underwent contrast-enhanced, portal-venous phase CT of the abdomen. Radiomic features were extracted using the PyRadiomics extension for 3D Slicer. Following elastic net regularisation, seven of 1,132 extracted radiomic features were selected to build a radiomic signature. This was combined with patient demographics to create a predictive nomogram. The calibration curves in both the training and validation cohorts were assessed using a Hosmer-Lemeshow test.
The radiomic signature alone yielded an area under the curve of 91.7% in the training cohort (n=93) and 87.1% in the validation cohort (n=48). The predictive nomogram, which combined age, a previous history of malignancy, and the radiomic signature, had an AUC of 97.2% in the training cohort and 90.4% in the validation cohort.
The present nomogram has the potential to differentiate between a lipid-poor adrenal adenoma and adrenal metastasis on portal-venous CT.
评估基于放射组学特征分析能否有助于鉴别乏脂性腺瘤与肾上腺转移瘤。
本研究纳入 86 名经活检证实为肾上腺转移瘤的患者(女性:男性=42:44;平均年龄 66 岁)和 55 名经活检证实为乏脂性腺瘤的患者(女性:男性=39:16;平均年龄 67 岁),所有患者均接受了腹部增强门静脉期 CT 检查。使用 3D Slicer 中的 PyRadiomics 扩展程序提取放射组学特征。在进行弹性网正则化后,从 1132 个提取的放射组学特征中选择了 7 个特征来构建放射组学特征。将其与患者的人口统计学特征相结合,以创建预测列线图。在训练组(n=93)和验证组(n=48)中,通过 Hosmer-Lemeshow 检验评估校准曲线。
单独的放射组学特征在训练组中的曲线下面积为 91.7%(n=93),在验证组中的曲线下面积为 87.1%(n=48)。结合年龄、既往恶性肿瘤病史和放射组学特征的预测列线图,在训练组中的 AUC 为 97.2%,在验证组中的 AUC 为 90.4%。
本列线图有潜力通过门静脉期 CT 来鉴别乏脂性腺瘤与肾上腺转移瘤。