Suppr超能文献

巨行星撞击与大陆的起源和演化。

Giant impacts and the origin and evolution of continents.

机构信息

School of Earth and Planetary Sciences, the Institute for Geoscience Research, Timescales of Mineral Systems Group, Curtin University, Perth, Western Australia, Australia.

Centre for Global Tectonics, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China.

出版信息

Nature. 2022 Aug;608(7922):330-335. doi: 10.1038/s41586-022-04956-y. Epub 2022 Aug 10.

Abstract

Earth is the only planet known to have continents, although how they formed and evolved is unclear. Here using the oxygen isotope compositions of dated magmatic zircon, we show that the Pilbara Craton in Western Australia, Earth's best-preserved Archaean (4.0-2.5 billion years ago (Ga)) continental remnant, was built in three stages. Stage 1 zircons (3.6-3.4 Ga) form two age clusters with one-third recording submantle δO, indicating crystallization from evolved magmas derived from hydrothermally altered basaltic crust like that in modern-day Iceland. Shallow melting is consistent with giant impacts that typified the first billion years of Earth history. Giant impacts provide a mechanism for fracturing the crust and establishing prolonged hydrothermal alteration by interaction with the globally extensive ocean. A giant impact at around 3.6 Ga, coeval with the oldest low-δO zircon, would have triggered massive mantle melting to produce a thick mafic-ultramafic nucleus. A second low-δO zircon cluster at around 3.4 Ga is contemporaneous with spherule beds that provide the oldest material evidence for giant impacts on Earth. Stage 2 (3.4-3.0 Ga) zircons mostly have mantle-like δO and crystallized from parental magmas formed near the base of the evolving continental nucleus. Stage 3 (<3.0 Ga) zircons have above-mantle δO, indicating efficient recycling of supracrustal rocks. That the oldest felsic rocks formed at 3.9-3.5 Ga (ref. ), towards the end of the so-called late heavy bombardment, is not a coincidence.

摘要

地球是已知唯一拥有大陆的行星,但大陆如何形成和演化仍不清楚。本研究利用定年火成锆石的氧同位素组成,表明澳大利亚西部皮尔巴拉克拉通(约 40 亿至 25 亿年前)是地球上保存最好的太古宙(40 亿至 25 亿年前)大陆残余,它是分三个阶段形成的。阶段 1 锆石(36 亿至 34 亿年前)形成两个年龄群,其中三分之一记录了亚地幔 δO,表明它们是从类似于现代冰岛的水热蚀变玄武质地壳中演化而来的熔体结晶形成的。浅层熔融与地球历史的最初 10 亿年的典型巨型撞击相一致。巨型撞击为破裂地壳并通过与全球广泛海洋的相互作用建立长期水热蚀变提供了机制。大约 36 亿年前与最古老的低 δO 锆石同时发生的一次巨型撞击,可能引发了大规模的地幔熔融,形成了一个厚厚的镁铁质-超镁铁质核。大约 34 亿年前的第二个低 δO 锆石群与球粒层同时出现,球粒层为地球上巨型撞击提供了最早的物质证据。阶段 2(34 亿至 30 亿年前)的锆石大多具有地幔样 δO,是从演化中的大陆核底部附近形成的母岩浆中结晶形成的。阶段 3(<30 亿年前)的锆石具有地幔之上的 δO,表明了上地壳岩石的有效循环。最古老的长英质岩石形成于 39 亿至 35 亿年前(参考文献),接近所谓的晚期重轰炸末期,这并非巧合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验