Suppr超能文献

基于分子动力学模拟的冻结速率对溶菌酶稳定性影响的研究。

Molecular Dynamics Modeling Based Investigation of the Effect of Freezing Rate on Lysozyme Stability.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA.

Drug Product Development, BioTherapeutics Development, Janssen Research and Development, Malvern, PA, 19355, USA.

出版信息

Pharm Res. 2022 Oct;39(10):2585-2596. doi: 10.1007/s11095-022-03358-z. Epub 2022 Aug 10.

Abstract

PURPOSE

The stability of protein drug products frozen during fill finish operations is greatly affected by the freezing rate applied. Non-optimal freezing rates may lead to the denaturation of protein's complex macromolecular conformation. However, limited work has been done to address the effect of different freezing rates on protein stability at nano-scale level.

METHODS

The stability of a model protein, lysozyme, was investigated at atomic and molecular scale under varying freezing rates and moving ice-water interface. Ice seeding approach was adopted to initiate ice formation in this present simulation.

RESULTS

The faster freezing rate (11-12 K/490 ns) applied resulted in overall smaller ice fraction within the simulation box with a larger freeze-concentrated liquid (FCL) region. Consequently, the faster freezing rate better maintained protein stability with less secondary structure deviations, higher hydration level and structural compactness, and less fluctuations at individual residues than observed following slow (5-6 K/490 ns) and medium (7-8 K/490 ns) freezing rates. The present study also identified the residues near and within helices 3, 6, 7, and 8 dominate the structural instability of the lysozyme at 247 K freezing temperature.

CONCLUSIONS

For the first time, ice formation in therapeutic protein solution was studied "non-isothermally" at different freezing rates using molecular dynamics simulations. Thus, a good understanding of freezing rates on protein instability was revealed by applying the developed computational model.

摘要

目的

在灌装和完成操作过程中冷冻的蛋白质药物产品的稳定性受应用的冷冻速率极大影响。非最佳的冷冻速率可能导致蛋白质复杂大分子构象的变性。然而,在纳米尺度上研究不同冷冻速率对蛋白质稳定性影响的工作有限。

方法

在不同的冷冻速率和移动的冰-水界面下,在原子和分子尺度上研究了模型蛋白溶菌酶的稳定性。在本模拟中采用冰种方法来引发冰的形成。

结果

应用的较快冷冻速率(11-12 K/490 ns)导致模拟盒内的总冰分数较小,具有较大的冷冻浓缩液相(FCL)区域。因此,与较慢(5-6 K/490 ns)和中等(7-8 K/490 ns)冷冻速率相比,较快冷冻速率更好地保持了蛋白质稳定性,具有较少的二级结构偏差、较高的水合水平和结构紧凑性,以及个体残基的波动较小。本研究还确定了靠近和在螺旋 3、6、7 和 8 内的残基主导了 247 K 冷冻温度下溶菌酶的结构不稳定性。

结论

首次使用分子动力学模拟“非等温”研究了不同冷冻速率下治疗性蛋白质溶液中的冰形成。因此,通过应用所开发的计算模型,揭示了冷冻速率对蛋白质不稳定性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验