Feretzakis Georgios, Karlis George, Loupelis Evangelos, Kalles Dimitris, Chatzikyriakou Rea, Trakas Nikolaos, Karakou Eugenia, Sakagianni Aikaterini, Tzelves Lazaros, Petropoulou Stavroula, Tika Aikaterini, Dalainas Ilias, Kaldis Vasileios
Sismanogleio General Hospital, Athens, Greece.
Hellenic Open University, Patras, Greece.
J Crit Care Med (Targu Mures). 2022 May 12;8(2):107-116. doi: 10.2478/jccm-2022-0003. eCollection 2022 Apr.
One of the most important tasks in the Emergency Department (ED) is to promptly identify the patients who will benefit from hospital admission. Machine Learning (ML) techniques show promise as diagnostic aids in healthcare.
Our objective was to find an algorithm using ML techniques to assist clinical decision-making in the emergency setting.
We assessed the following features seeking to investigate their performance in predicting hospital admission: serum levels of Urea, Creatinine, Lactate Dehydrogenase, Creatine Kinase, C-Reactive Protein, Complete Blood Count with differential, Activated Partial Thromboplastin Time, DDi-mer, International Normalized Ratio, age, gender, triage disposition to ED unit and ambulance utilization. A total of 3,204 ED visits were analyzed.
The proposed algorithms generated models which demonstrated acceptable performance in predicting hospital admission of ED patients. The range of F-measure and ROC Area values of all eight evaluated algorithms were [0.679-0.708] and [0.734-0.774], respectively. The main advantages of this tool include easy access, availability, yes/no result, and low cost. The clinical implications of our approach might facilitate a shift from traditional clinical decision-making to a more sophisticated model.
Developing robust prognostic models with the utilization of common biomarkers is a project that might shape the future of emergency medicine. Our findings warrant confirmation with implementation in pragmatic ED trials.
急诊科最重要的任务之一是迅速识别出能从住院治疗中获益的患者。机器学习(ML)技术在医疗保健领域作为诊断辅助手段显示出了前景。
我们的目标是找到一种使用ML技术的算法,以协助急诊环境中的临床决策。
我们评估了以下特征,旨在研究它们在预测住院方面的表现:尿素、肌酐、乳酸脱氢酶、肌酸激酶、C反应蛋白的血清水平、全血细胞计数及分类、活化部分凝血活酶时间、D-二聚体、国际标准化比值、年龄、性别、分诊到急诊科的情况以及救护车使用情况。总共分析了3204次急诊就诊。
所提出的算法生成的模型在预测急诊患者住院方面表现出可接受的性能。所有八种评估算法的F值范围和ROC曲线下面积值分别为[0.679 - 0.708]和[0.734 - 0.774]。该工具的主要优点包括易于获取、可用性高、是/否结果以及成本低。我们方法的临床意义可能有助于从传统临床决策向更复杂模型的转变。
利用常见生物标志物开发强大的预后模型是一个可能塑造急诊医学未来的项目。我们的研究结果有待在实用的急诊试验中实施以进行确认。