Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150,Finland.
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2022 Sep 28;22(18):7742-7750. doi: 10.1021/acs.nanolett.2c01327. Epub 2022 Aug 11.
In early breast cancer progression, cancer cells invade through a nanoporous basement membrane (BM) as a first key step toward metastasis. This invasion is thought to be mediated by a combination of proteases, which biochemically degrade BM matrix, and physical forces, which mechanically open up holes in the matrix. To date, techniques that quantify cellular forces of BM invasion in 3D culture have been unavailable. Here, we developed cellular-force measurements for breast cancer cell invasion in 3D culture that combine multiple-particle tracking of force-induced BM-matrix displacements at the nanoscale, and magnetic microrheometry of localized matrix mechanics. We find that cancer-cell protrusions exert forces from picoNewtons up to nanoNewtons during invasion. Strikingly, the protrusions extension involves stepwise increases in force, in steps of 0.2 to 0.5 nN exerted from every 30 s to 6 min. Thus, this technique reveals previously unreported dynamics of force generation by invasive protrusions in cancer cells.
在早期乳腺癌的进展过程中,癌细胞通过纳米多孔基底膜(BM)侵袭,这是转移的第一个关键步骤。这种侵袭被认为是由蛋白酶的组合介导的,这些蛋白酶在生化上降解 BM 基质,以及物理力,这些物理力机械地打开基质中的孔。迄今为止,还没有能够量化 3D 培养中细胞对 BM 侵袭的力的技术。在这里,我们开发了用于 3D 培养中乳腺癌细胞侵袭的细胞力测量方法,该方法结合了纳米级力诱导 BM 基质位移的多粒子跟踪,以及局部基质力学的磁微流变学。我们发现,癌细胞突起在侵袭过程中会产生皮牛顿到纳牛顿的力。引人注目的是,突起的延伸涉及力的逐步增加,每 30 秒到 6 分钟从每一步增加 0.2 到 0.5 nN。因此,这项技术揭示了癌细胞中侵袭性突起产生力的以前未报告的动力学。