Wang Dong, Yang Liu, Hu Zhen, Wang Fang, Yang Yage, Pan Xiaokai, Dong Zhuo, Tian Shijian, Zhang Libo, Han Li, Jiang Mengjie, Tang Keqin, Dai Fuxing, Zhang Kai, Lu Wei, Chen Xiaoshuang, Wang Lin, Hu Weida
State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, 230026, China.
Nat Commun. 2025 Jan 2;16(1):25. doi: 10.1038/s41467-024-55426-0.
Effective detection is critical for terahertz applications, yet it remains hindered by the unclear mechanisms that necessitate a deeper understanding of photosensitive materials with exotic physical phenomena. Here, we investigate the terahertz detection capabilities of the two-dimensional antiferromagnetic semimetal NbFeTe. Our study reveals that the interaction between antiferromagnetic magnetic moments and electron spin induces disordered carriers to hop between localized states, resulting in a nonlinear increase in responsivity as temperature decreases. We integrate asymmetric electrodes to generate a sufficient Seebeck potential, enabling carriers to overcome the barrier of localized states and achieve reordering at room temperature. Additionally, the self-powered performance of the NbFeTe₂/graphene heterojunction is optimized by the built-in electric field, achieving peak responsivity of 220 V W and noise equivalent power of <20 pW Hz. These results shed light on the potential of antiferromagnetic semimetals in large-area, high-speed imaging applications, marking a significant advancement in terahertz photonics.
有效的探测对于太赫兹应用至关重要,但由于机制尚不清楚,仍受到阻碍,这需要更深入地了解具有奇异物理现象的光敏材料。在此,我们研究了二维反铁磁半金属NbFeTe的太赫兹探测能力。我们的研究表明,反铁磁磁矩与电子自旋之间的相互作用会诱导无序载流子在局域态之间跳跃,导致响应率随温度降低而非线性增加。我们集成了不对称电极以产生足够的塞贝克电势,使载流子能够克服局域态的势垒并在室温下实现重新排序。此外,NbFeTe₂/石墨烯异质结的自供电性能通过内置电场得到优化,实现了220 V W的峰值响应率和<20 pW Hz的噪声等效功率。这些结果揭示了反铁磁半金属在大面积、高速成像应用中的潜力,标志着太赫兹光子学的重大进展。