Department of Biology, Université Laval, Québec, QC, Canada.
Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada.
PLoS One. 2022 Aug 11;17(8):e0272538. doi: 10.1371/journal.pone.0272538. eCollection 2022.
Movement of organisms plays a fundamental role in the evolution and diversity of life. Animals typically move at an irregular pace over time and space, alternating among movement states. Understanding movement decisions and developing mechanistic models of animal distribution dynamics can thus be contingent to adequate discrimination of behavioral phases. Existing methods to disentangle movement states typically require a follow-up analysis to identify state-dependent drivers of animal movement, which overlooks statistical uncertainty that comes with the state delineation process. Here, we developed population-level, multi-state step selection functions (HMM-SSF) that can identify simultaneously the different behavioral bouts and the specific underlying behavior-habitat relationship. Using simulated data and relocation data from mule deer (Odocoileus hemionus), plains bison (Bison bison bison) and plains zebra (Equus quagga), we illustrated the HMM-SSF robustness, versatility, and predictive ability for animals involved in distinct behavioral processes: foraging, migrating and avoiding a nearby predator. Individuals displayed different habitat selection pattern during the encamped and the travelling phase. Some landscape attributes switched from being selected to avoided, depending on the movement phase. We further showed that HMM-SSF can detect multi-modes of movement triggered by predators, with prey switching to the travelling phase when predators are in close vicinity. HMM-SSFs thus can be used to gain a mechanistic understanding of how animals use their environment in relation to the complex interplay between their needs to move, their knowledge of the environment and navigation capacity, their motion capacity and the external factors related to landscape heterogeneity.
生物体的运动在生命的进化和多样性中起着基础性的作用。动物通常会在时间和空间上不规则地移动,在不同的运动状态之间交替。因此,理解运动决策并开发动物分布动力学的机械模型可以取决于对行为阶段的充分区分。现有的分离运动状态的方法通常需要后续分析来识别动物运动的状态相关驱动因素,而忽略了状态划分过程带来的统计不确定性。在这里,我们开发了基于群体的多状态步选择函数(HMM-SSF),可以同时识别不同的行为回合和特定的潜在行为-栖息地关系。使用模拟数据和骡鹿(Odocoileus hemionus)、美洲野牛(Bison bison bison)和平原斑马(Equus quagga)的重新安置数据,我们说明了 HMM-SSF 对涉及不同行为过程的动物的稳健性、多功能性和预测能力:觅食、迁徙和避开附近的捕食者。个体在露营和旅行阶段表现出不同的栖息地选择模式。一些景观属性根据运动阶段的不同而从被选择到被回避。我们进一步表明,HMM-SSF 可以检测到由捕食者触发的多种运动模式,当捕食者靠近时,猎物会切换到旅行阶段。因此,HMM-SSF 可用于深入了解动物如何根据其移动需求、对环境的了解和导航能力、运动能力以及与景观异质性相关的外部因素之间的复杂相互作用,利用其环境。