Suppr超能文献

基于条件生成对抗网络的多类终端弹道数据集预测。

Predictions on multi-class terminal ballistics datasets using conditional Generative Adversarial Networks.

机构信息

Institute for Infrastructure and Environment (IIE), School of Engineering, The University of Edinburgh, Alexander Graham Bell building, Edinburgh EH9 3FG, United Kingdom.

Institute for Infrastructure and Environment (IIE), School of Engineering, The University of Edinburgh, Alexander Graham Bell building, Edinburgh EH9 3FG, United Kingdom.

出版信息

Neural Netw. 2022 Oct;154:425-440. doi: 10.1016/j.neunet.2022.07.034. Epub 2022 Aug 2.

Abstract

Ballistic impacts are a primary risk in both civil and military defence applications, where successfully predicting the dynamic response of a material or structure to impact crucial to the design of safe and fit-for-purpose protective structures. This study proposes a conditional Generative Adversarial Network (cGAN) architecture that can learn directly from available ballistic data and can be conditioned on additional information, such as class labels, to govern its output. A single Multi-Layer Perceptron (MLP) cGAN architecture is trained on a multi-class ballistic training set consisting of 10 classes labelled 0-9 where each class refers to a ballistic curve with a different ballistic limit velocity, v. A total of 5 models are trained on datasets consisting of 5, 10, 15, 20 and 25 samples within each class. For integer class labels 0-9, all cGAN models successfully predict the v with a maximum error of 4.12%. Additionally, for non-integer class labels between 0-9 the v predictions are similar despite not explicitly appearing in the training set. Moreover, each cGAN model is challenged to generate new samples for class labels that exist beyond the scope of the training set for class labels between 9-20. Four of the models predict the v with an error of less than 1.5% in all cases. This study showcases how a cGAN model can learn directly from a multi-class ballistic dataset and generate additional samples representative of that data for classes that do not appear explicitly in the training set.

摘要

弹道冲击是民用和军事防御应用中的主要风险,成功预测材料或结构对冲击的动态响应对于设计安全且适用的防护结构至关重要。本研究提出了一种条件生成对抗网络(cGAN)架构,该架构可以直接从可用的弹道数据中学习,并可以根据其他信息(如类别标签)进行条件约束,以控制其输出。一个单一的多层感知器(MLP)cGAN 架构在一个由 10 个类别组成的多类别弹道训练集上进行训练,这些类别标记为 0-9,每个类别表示具有不同弹道极限速度 v 的弹道曲线。总共在每个类别中包含 5、10、15、20 和 25 个样本的 5 个数据集上训练了 5 个模型。对于整数类别标签 0-9,所有 cGAN 模型都成功地以最大误差 4.12%预测了 v。此外,对于非整数类别标签 0-9,尽管它们不在训练集中显式出现,v 的预测值仍然相似。此外,每个 cGAN 模型都面临挑战,需要为训练集范围之外的类别标签生成新的样本,这些样本的类别标签在 9-20 之间。在所有情况下,其中 4 个模型以小于 1.5%的误差预测 v。本研究展示了 cGAN 模型如何直接从多类别弹道数据集学习,并为训练集中未显式出现的类别生成代表该数据的额外样本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验