Suppr超能文献

运用机器学习技术实现角膜专家的圆锥角膜检测技能。

Use of machine learning to achieve keratoconus detection skills of a corneal expert.

机构信息

Department of Ophthalmology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.

Faculty of Medicine, Tel Aviv University Sackler, Tel Aviv, Israel.

出版信息

Int Ophthalmol. 2022 Dec;42(12):3837-3847. doi: 10.1007/s10792-022-02404-4. Epub 2022 Aug 11.

Abstract

PURPOSE

To construct an automatic machine-learning derived algorithm discriminating between normal corneas and suspect irregular or keratoconic corneas.

METHODS

A total of 8526 corneal tomography images of 4904 eyes obtained between November 2010 and July 2017 using a combined Scheimpflug/Placido tomographer were retrospectively evaluated. Each image was evaluated for acquisition quality and was labeled as normal, suspect irregular or keratoconic by a cornea specialist. Two algorithms were built. The first was based on 94 instrument-derived output parameters, and the second integrated keratoconus prediction indices of the device with the 94 instrument-derived output parameters. Both models were compared with the tomographer's keratoconus detection algorithms. Out of the 8526 images evaluated, 7104 images of 3787 eyes had sufficient acquisition quality. Of those, 5904 examinations were randomly chosen for construction of the models using the random forest algorithm. The models were then validated using the remaining 1200 examinations.

RESULTS

Both RF algorithms had a larger AUC compared with any of the tomographer's KC detection algorithms (p < 10). The first constructed model had 90.2% accuracy, sensitivity of 94.2%, and specificity of 89.6% (Youden 0.838). Calculated AUC was 0.964. The second model had 91.5% accuracy, sensitivity of 94.7%, and specificity of 89.8% (Youden 0.846). Calculated AUC was 0.969.

CONCLUSION

Using the RF machine-learning algorithm, accuracy of discrimination between normal, suspect irregular and keratoconic corneas approximates that of an experienced corneal expert. Applying machine learning to corneal tomography can facilitate keratoconus screening in large populations as well as off-site screening of refractive surgery candidates.

摘要

目的

构建一种自动机器学习衍生算法,以区分正常角膜和可疑不规则或圆锥角膜。

方法

回顾性分析 2010 年 11 月至 2017 年 7 月期间使用联合 Scheimpflug/Placido 断层扫描仪获得的 4904 只眼的 8526 例角膜断层图像。对每张图像进行采集质量评估,并由角膜专家标记为正常、可疑不规则或圆锥角膜。构建了两种算法。第一种算法基于 94 个仪器衍生输出参数,第二种算法将设备的圆锥角膜预测指标与 94 个仪器衍生输出参数相结合。将这两种模型与断层扫描仪的圆锥角膜检测算法进行比较。在评估的 8526 个图像中,有 7104 个图像(3787 只眼)具有足够的采集质量。在这些图像中,随机选择 5904 次检查用于使用随机森林算法构建模型。然后使用剩余的 1200 次检查对模型进行验证。

结果

两种 RF 算法的 AUC 均大于任何断层扫描仪的 KC 检测算法(p<0.001)。构建的第一个模型的准确性为 90.2%,灵敏度为 94.2%,特异性为 89.6%(Youden 0.838)。计算的 AUC 为 0.964。第二个模型的准确性为 91.5%,灵敏度为 94.7%,特异性为 89.8%(Youden 0.846)。计算的 AUC 为 0.969。

结论

使用 RF 机器学习算法,区分正常、可疑不规则和圆锥角膜的准确性与有经验的角膜专家相当。将机器学习应用于角膜断层扫描可以促进在大量人群中进行圆锥角膜筛查,以及对屈光手术候选者进行远程筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验