Suppr超能文献

基于角膜断层成像的深度学习技术在屈光手术患者筛选中的应用。

Screening Candidates for Refractive Surgery With Corneal Tomographic-Based Deep Learning.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.

出版信息

JAMA Ophthalmol. 2020 May 1;138(5):519-526. doi: 10.1001/jamaophthalmol.2020.0507.

Abstract

IMPORTANCE

Evaluating corneal morphologic characteristics with corneal tomographic scans before refractive surgery is necessary to exclude patients with at-risk corneas and keratoconus. In previous studies, researchers performed screening with machine learning methods based on specific corneal parameters. To date, a deep learning algorithm has not been used in combination with corneal tomographic scans.

OBJECTIVE

To examine the use of a deep learning model in the screening of candidates for refractive surgery.

DESIGN, SETTING, AND PARTICIPANTS: A diagnostic, cross-sectional study was conducted at the Zhongshan Ophthalmic Center, Guangzhou, China, with examination dates extending from July 18, 2016, to March 29, 2019. The investigation was performed from July 2, 2018, to June 28, 2019. Participants included 1385 patients; 6465 corneal tomographic images were used to generate the artificial intelligence (AI) model. The Pentacam HR system was used for data collection.

INTERVENTIONS

The deidentified images were analyzed by ophthalmologists and the AI model.

MAIN OUTCOMES AND MEASURES

The performance of the AI classification system.

RESULTS

A classification system centered on the AI model Pentacam InceptionResNetV2 Screening System (PIRSS) was developed for screening potential candidates for refractive surgery. The model achieved an overall detection accuracy of 94.7% (95% CI, 93.3%-95.8%) on the validation data set. Moreover, on the independent test data set, the PIRSS model achieved an overall detection accuracy of 95% (95% CI, 88.8%-97.8%), which was comparable with that of senior ophthalmologists who are refractive surgeons (92.8%; 95% CI, 91.2%-94.4%) (P = .72). In distinguishing corneas with contraindications for refractive surgery, the PIRSS model performed better than the classifiers (95% vs 81%; P < .001) in the Pentacam HR system on an Asian patient database.

CONCLUSIONS AND RELEVANCE

PIRSS appears to be useful in classifying images to provide corneal information and preliminarily identify at-risk corneas. PIRSS may provide guidance to refractive surgeons in screening candidates for refractive surgery as well as for generalized clinical application for Asian patients, but its use needs to be confirmed in other populations.

摘要

重要性

在屈光手术前,通过角膜断层扫描评估角膜形态特征对于排除高危角膜和圆锥角膜患者非常必要。在之前的研究中,研究人员基于特定的角膜参数使用机器学习方法进行筛查。迄今为止,尚未将深度学习算法与角膜断层扫描结合使用。

目的

检查深度学习模型在屈光手术候选者筛查中的应用。

设计、设置和参与者:这是一项在中国广州中山眼科中心进行的诊断性、横断面研究,检查日期为 2016 年 7 月 18 日至 2019 年 3 月 29 日。该研究于 2018 年 7 月 2 日至 2019 年 6 月 28 日进行。参与者包括 1385 名患者;使用 6465 个角膜断层图像生成人工智能(AI)模型。Pentacam HR 系统用于数据收集。

干预措施

眼科医生和 AI 模型对匿名图像进行分析。

主要结果和措施

AI 分类系统的性能。

结果

开发了一种以 AI 模型 Pentacam InceptionResNetV2 Screening System(PIRSS)为中心的分类系统,用于筛查屈光手术潜在候选者。该模型在验证数据集上的整体检测准确率为 94.7%(95%CI,93.3%-95.8%)。此外,在独立测试数据集上,PIRSS 模型的整体检测准确率为 95%(95%CI,88.8%-97.8%),与屈光外科医生的资深眼科医生相当(92.8%;95%CI,91.2%-94.4%)(P = .72)。在区分不适合屈光手术的角膜方面,与 Pentacam HR 系统中的分类器相比(95%比 81%;P < .001),PIRSS 模型在亚洲患者数据库中的表现更好。

结论和相关性

PIRSS 似乎可用于对图像进行分类,以提供角膜信息并初步识别高危角膜。PIRSS 可在屈光手术候选者的筛选中为屈光外科医生提供指导,并可在亚洲患者中进行一般临床应用,但需要在其他人群中进行验证。

相似文献

引用本文的文献

3
Application of artificial intelligence in myopia prevention and control.人工智能在近视防控中的应用。
Pediatr Investig. 2025 Mar 18;9(2):114-124. doi: 10.1002/ped4.70001. eCollection 2025 Jun.
5
Advances in machine learning for keratoconus diagnosis.圆锥角膜诊断中机器学习的进展。
Int Ophthalmol. 2025 Mar 30;45(1):128. doi: 10.1007/s10792-025-03496-4.

本文引用的文献

3
The epidemics of myopia: Aetiology and prevention.近视的流行:病因与预防。
Prog Retin Eye Res. 2018 Jan;62:134-149. doi: 10.1016/j.preteyeres.2017.09.004. Epub 2017 Sep 23.
7
Corneal elevation in a large number of myopic Chinese patients.大量中国近视患者的角膜高度
Cont Lens Anterior Eye. 2016 Jun;39(3):185-90. doi: 10.1016/j.clae.2016.01.005. Epub 2016 Feb 2.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验