Saida Daisuke, Hidaka Mutsuo, Imafuku Kentaro, Yamanashi Yuki
Device Research Institute, National Institute of Advanced Industrial Science and Technology, Central2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
Quantum laboratory, Fujitsu Limited, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki, Kanagawa, 211-8588, Japan.
Sci Rep. 2022 Aug 11;12(1):13669. doi: 10.1038/s41598-022-17867-9.
Prime factorization (P = M × N) is a promising application for quantum computing. Shor's algorithm is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a quantum annealing method for solving prime factorization. A superconducting quantum circuit with native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current conditions can be used to obtain high success probability and all candidate factorized elements.
质因数分解(P = M × N)是量子计算的一个有前景的应用。肖尔算法是突破分析P的极限的关键概念,这是经典计算无法有效解决的问题;然而,该算法需要可纠错的逻辑量子比特。在这里,我们描述一种用于解决质因数分解的量子退火方法。一个原生实现乘法器哈密顿量的超导量子电路在退火后提供M和N的组合作为数字P的解。这个电路很稳健,并且可以很容易地扩展以扩大分析规模。我们展示了对乘法器单元的实验和理论探索。我们在电路模拟中以及在10 mK的实验中演示了2比特分解。我们还解释了如何利用当前条件获得高成功概率和所有候选分解元素。