Suppr超能文献

使用实现乘法哈密顿量的超导磁通量子比特通过量子退火进行因式分解。

Factorization by quantum annealing using superconducting flux qubits implementing a multiplier Hamiltonian.

作者信息

Saida Daisuke, Hidaka Mutsuo, Imafuku Kentaro, Yamanashi Yuki

机构信息

Device Research Institute, National Institute of Advanced Industrial Science and Technology, Central2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.

Quantum laboratory, Fujitsu Limited, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki, Kanagawa, 211-8588, Japan.

出版信息

Sci Rep. 2022 Aug 11;12(1):13669. doi: 10.1038/s41598-022-17867-9.

Abstract

Prime factorization (P = M × N) is a promising application for quantum computing. Shor's algorithm is a key concept for breaking the limit for analyzing P, which cannot be effectively solved by classical computation; however, the algorithm requires error-correctable logical qubits. Here, we describe a quantum annealing method for solving prime factorization. A superconducting quantum circuit with native implementation of the multiplier Hamiltonian provides combinations of M and N as a solution for number P after annealing. This circuit is robust and can be expanded easily to scale up the analysis. We present an experimental and theoretical exploration of the multiplier unit. We demonstrate the 2-bit factorization in a circuit simulation and experimentally at 10 mK. We also explain how the current conditions can be used to obtain high success probability and all candidate factorized elements.

摘要

质因数分解(P = M × N)是量子计算的一个有前景的应用。肖尔算法是突破分析P的极限的关键概念,这是经典计算无法有效解决的问题;然而,该算法需要可纠错的逻辑量子比特。在这里,我们描述一种用于解决质因数分解的量子退火方法。一个原生实现乘法器哈密顿量的超导量子电路在退火后提供M和N的组合作为数字P的解。这个电路很稳健,并且可以很容易地扩展以扩大分析规模。我们展示了对乘法器单元的实验和理论探索。我们在电路模拟中以及在10 mK的实验中演示了2比特分解。我们还解释了如何利用当前条件获得高成功概率和所有候选分解元素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ad/9372081/1f3167e7c890/41598_2022_17867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验