Suppr超能文献

基于 DiaPASEF 的蛋白质组学分析及特征选择在不同类型肺癌患者及对照人群的痰液蛋白质组特征描述中的应用。

diaPASEF Proteomics and Feature Selection for the Description of Sputum Proteome Profiles in a Cohort of Different Subtypes of Lung Cancer Patients and Controls.

机构信息

Pneumology Department, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, 14004 Cordoba, Spain.

Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain.

出版信息

Int J Mol Sci. 2022 Aug 5;23(15):8737. doi: 10.3390/ijms23158737.

Abstract

The high mortality, the presence of an initial asymptomatic stage and the fact that diagnosis in early stages reduces mortality justify the implementation of screening programs in the populations at risk of lung cancer. It is imperative to develop less aggressive methods that can complement existing diagnosis technologies. In this study, we aimed to identify lung cancer protein biomarkers and pathways affected in sputum samples, using the recently developed diaPASEF mass spectrometry (MS) acquisition mode. The sputum proteome of lung cancer cases and controls was analyzed through nano-HPLC-MS using the diaPASEF mode. For functional analysis, the results from differential expression analysis were further analyzed in the STRING platform, and feature selection was performed using sparse partial least squares discriminant analysis (sPLS-DA). Our results showed an activation of inflammation, with an alteration of pathways and processes related to acute-phase, complement, and immune responses. The resulting sPLS-DA model separated between case and control groups with high levels of sensitivity and specificity. In conclusion, we showed how new-generation proteomics can be used to detect potential biomarkers in sputum samples, and ultimately to discriminate patients from controls and even to help to differentiate between different cancer subtypes.

摘要

高死亡率、存在初始无症状阶段以及早期诊断降低死亡率的事实,证明了在肺癌高危人群中实施筛查计划的合理性。开发能够补充现有诊断技术的侵袭性更小的方法势在必行。在这项研究中,我们旨在使用最近开发的 diaPASEF 质谱(MS)采集模式,确定痰液样本中受影响的肺癌蛋白生物标志物和途径。通过纳米 HPLC-MS 采用 diaPASEF 模式分析肺癌病例和对照组的痰液蛋白质组。为了进行功能分析,对差异表达分析的结果在 STRING 平台上进一步进行分析,并使用稀疏偏最小二乘判别分析(sPLS-DA)进行特征选择。我们的结果显示炎症被激活,与急性期、补体和免疫反应相关的途径和过程发生改变。由此产生的 sPLS-DA 模型能够以较高的灵敏度和特异性区分病例组和对照组。总之,我们展示了如何使用新一代蛋白质组学来检测痰液样本中的潜在生物标志物,最终区分患者和对照组,甚至有助于区分不同的癌症亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b223/9369298/05b707c3ce8c/ijms-23-08737-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验