Suppr超能文献

一种使用椭圆傅里叶分析和临床图像对非黑素瘤皮肤病变进行形状表征的新方法。

A Novel Approach for the Shape Characterisation of Non-Melanoma Skin Lesions Using Elliptic Fourier Analyses and Clinical Images.

作者信息

Courtenay Lloyd A, Barbero-García Innes, Aramendi Julia, González-Aguilera Diego, Rodríguez-Martín Manuel, Rodríguez-Gonzalvez Pablo, Cañueto Javier, Román-Curto Concepción

机构信息

Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, University of Salamanca, Hornos Caleros 50, 05003 Ávila, Spain.

Deptartment of Geology, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.

出版信息

J Clin Med. 2022 Jul 28;11(15):4392. doi: 10.3390/jcm11154392.

Abstract

The early detection of Non-Melanoma Skin Cancer (NMSC) is crucial to achieve the best treatment outcomes. Shape is considered one of the main parameters taken for the detection of some types of skin cancer such as melanoma. For NMSC, the importance of shape as a visual detection parameter is not well-studied. A dataset of 993 standard camera images containing different types of NMSC and benign skin lesions was analysed. For each image, the lesion boundaries were extracted. After an alignment and scaling, Elliptic Fourier Analysis (EFA) coefficients were calculated for the boundary of each lesion. The asymmetry of lesions was also calculated. Then, multivariate statistics were employed for dimensionality reduction and finally computational learning classification was employed to evaluate the separability of the classes. The separation between malignant and benign samples was successful in most cases. The best-performing approach was the combination of EFA coefficients and asymmetry. The combination of EFA and asymmetry resulted in a balanced accuracy of 0.786 and an Area Under Curve of 0.735. The combination of EFA and asymmetry for lesion classification resulted in notable success rates when distinguishing between benign and malignant lesions. In light of these results, skin lesions' shape should be integrated as a fundamental part of future detection techniques in clinical screening.

摘要

非黑色素瘤皮肤癌(NMSC)的早期检测对于实现最佳治疗效果至关重要。形状被认为是检测某些类型皮肤癌(如黑色素瘤)的主要参数之一。对于NMSC,形状作为视觉检测参数的重要性尚未得到充分研究。分析了一个包含993张标准相机图像的数据集,这些图像包含不同类型的NMSC和良性皮肤病变。对于每张图像,提取病变边界。经过对齐和缩放后,计算每个病变边界的椭圆傅里叶分析(EFA)系数。还计算了病变的不对称性。然后,采用多元统计进行降维,最后采用计算学习分类来评估类别的可分离性。在大多数情况下,恶性和良性样本之间的分离是成功的。表现最佳的方法是EFA系数和不对称性的组合。EFA和不对称性的组合产生了0.786的平衡准确率和0.735的曲线下面积。在区分良性和恶性病变时,EFA和不对称性的组合用于病变分类产生了显著的成功率。鉴于这些结果,皮肤病变的形状应作为未来临床筛查检测技术的基本组成部分加以整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88f/9369039/caf642f01f2f/jcm-11-04392-g001.jpg

相似文献

2
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449.
3
Teledermatology for diagnosing skin cancer in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013193. doi: 10.1002/14651858.CD013193.
4
Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD011902. doi: 10.1002/14651858.CD011902.pub2.
5
Exploring dermoscopic structures for melanoma lesions' classification.
Front Big Data. 2024 Mar 25;7:1366312. doi: 10.3389/fdata.2024.1366312. eCollection 2024.
7
Using computational learning for non-melanoma skin cancer and actinic keratosis near-infrared hyperspectral signature classification.
Photodiagnosis Photodyn Ther. 2024 Oct;49:104269. doi: 10.1016/j.pdpdt.2024.104269. Epub 2024 Jul 11.
9
Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
Comput Methods Programs Biomed. 2019 Sep;178:201-218. doi: 10.1016/j.cmpb.2019.06.018. Epub 2019 Jun 16.
10
Quantitative evaluation of binary digital region asymmetry with application to skin lesion detection.
BMC Med Inform Decis Mak. 2018 Jun 27;18(1):50. doi: 10.1186/s12911-018-0641-7.

引用本文的文献

1
Normalization of Snai1-mediated vessel dysfunction increases drug response in cancer.
Oncogene. 2024 Aug;43(35):2661-2676. doi: 10.1038/s41388-024-03113-1. Epub 2024 Aug 2.
2
Near-infrared hyperspectral imaging and robust statistics for in vivo non-melanoma skin cancer and actinic keratosis characterisation.
PLoS One. 2024 Apr 25;19(4):e0300400. doi: 10.1371/journal.pone.0300400. eCollection 2024.

本文引用的文献

1
Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis.
Biomed Opt Express. 2021 Jul 20;12(8):5107-5127. doi: 10.1364/BOE.428143. eCollection 2021 Aug 1.
2
Skin Cancer Detection: A Review Using Deep Learning Techniques.
Int J Environ Res Public Health. 2021 May 20;18(10):5479. doi: 10.3390/ijerph18105479.
3
Craniofacial shape in patients with beta thalassaemia: a geometric morphometric analysis.
Sci Rep. 2021 Jan 18;11(1):1686. doi: 10.1038/s41598-020-80234-z.
4
Obtaining new resolutions in carnivore tooth pit morphological analyses: A methodological update for digital taphonomy.
PLoS One. 2020 Oct 8;15(10):e0240328. doi: 10.1371/journal.pone.0240328. eCollection 2020.
6
Scratches and grazes: a detailed microscopic analysis of trampling phenomena.
J Microsc. 2020 Feb;277(2):107-117. doi: 10.1111/jmi.12873. Epub 2020 Feb 13.
7
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images.
PLoS One. 2019 Jul 26;14(7):e0219388. doi: 10.1371/journal.pone.0219388. eCollection 2019.
9
The reproducibility of research and the misinterpretation of -values.
R Soc Open Sci. 2017 Dec 6;4(12):171085. doi: 10.1098/rsos.171085. eCollection 2017 Dec.
10
The Influence of trisomy 21 on facial form and variability.
Am J Med Genet A. 2017 Nov;173(11):2861-2872. doi: 10.1002/ajmg.a.38464. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验