Suppr超能文献

验证互联网应用程序在研究电子健康时代社会民族饮食中的基本营养素方面与美国农业部计算机营养数据系统的准确性。

Validating Accuracy of an Internet-Based Application against USDA Computerized Nutrition Data System for Research on Essential Nutrients among Social-Ethnic Diets for the E-Health Era.

机构信息

School of Nursing, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.

Heritage Victor Valley Medical Group, Big Bear Lake, CA 92315, USA.

出版信息

Nutrients. 2022 Jul 31;14(15):3168. doi: 10.3390/nu14153168.

Abstract

Internet-based applications (apps) are rapidly developing in the e-Health era to assess the dietary intake of essential macro-and micro-nutrients for precision nutrition. We, therefore, validated the accuracy of an internet-based app against the Nutrition Data System for Research (NDSR), assessing these essential nutrients among various social-ethnic diet types. The agreement between the two measures using intraclass correlation coefficients was good (0.85) for total calories, but moderate for caloric ranges outside of <1000 (0.75) and >2000 (0.57); and good (>0.75) for most macro- (average: 0.85) and micro-nutrients (average: 0.83) except cobalamin (0.73) and calcium (0.51). The app underestimated nutrients that are associated with protein and fat (protein: −5.82%, fat: −12.78%, vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%), while overestimated nutrients that are associated with carbohydrate (fiber: 6.7%, B9: 9.06%). Using artificial intelligence analytics, we confirmed the factors that could contribute to the differences between the two measures for various essential nutrients, and they included caloric ranges; the differences between the two measures for carbohydrates, protein, and fat; and diet types. For total calories, as an example, the source factors that contributed to the differences between the two measures included caloric range (<1000 versus others), fat, and protein; for cobalamin: protein, American, and Japanese diets; and for folate: caloric range (<1000 versus others), carbohydrate, and Italian diet. In the e-Health era, the internet-based app has the capacity to enhance precision nutrition. By identifying and integrating the effects of potential contributing factors in the algorithm of output readings, the accuracy of new app measures could be improved.

摘要

互联网应用程序(apps)在电子健康时代迅速发展,用于评估基本宏量和微量营养素的饮食摄入,以实现精准营养。因此,我们针对各种社会民族饮食类型,验证了互联网应用程序与研究营养数据系统(NDSR)之间的准确性。两种方法之间的一致性用组内相关系数表示为总卡路里(0.85),但<1000(0.75)和>2000(0.57)卡路里范围为中等(0.75);大多数宏量营养素(平均:0.85)和微量营养素(平均:0.83)(除钴胺素为 0.73 和钙为 0.51 外)的一致性良好。该应用程序低估了与蛋白质和脂肪相关的营养素(蛋白质:-5.82%,脂肪:-12.78%,维生素 B12:-13.59%,蛋氨酸:-8.76%,锌:-12.49%),而高估了与碳水化合物相关的营养素(纤维:6.7%,B9:9.06%)。通过人工智能分析,我们确认了导致两种方法之间对各种必需营养素的差异的因素,这些因素包括卡路里范围;碳水化合物、蛋白质和脂肪的两种方法之间的差异;以及饮食类型。例如,对于总卡路里,导致两种方法之间差异的来源因素包括卡路里范围(<1000 与其他范围)、脂肪和蛋白质;对于钴胺素:蛋白质、美国和日本饮食;以及对于叶酸:卡路里范围(<1000 与其他范围)、碳水化合物和意大利饮食。在电子健康时代,互联网应用程序有能力增强精准营养。通过在输出读数算法中识别和整合潜在影响因素的作用,可以提高新应用程序测量的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9370220/76917d133f56/nutrients-14-03168-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验