Suppr超能文献

验证健康饮食指数、血糖指数和血糖负荷与电子健康时代的现代饮食。

Validating Healthy Eating Index, Glycemic Index, and Glycemic Load with Modern Diets for E-Health Era.

机构信息

Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan.

The Villages Health, The Villages, FL 32162, USA.

出版信息

Nutrients. 2023 Mar 3;15(5):1263. doi: 10.3390/nu15051263.

Abstract

Predictors of healthy eating parameters, including the Healthy Eating Index (HEI), Glycemic Index (GI), and Glycemic Load (GL), were examined using various modern diets (n = 131) in preparation for personalized nutrition in the e-health era. Using Nutrition Data Systems for Research computerized software and artificial intelligence machine-learning-based predictive validation analyses, we included domains of HEI, caloric source, and various diets as the potentially modifiable factors. HEI predictors included whole fruits and whole grains, and empty calories. Carbohydrates were the common predictor for both GI and GL, with total fruits and Mexican diets being additional predictors for GI. The median amount of carbohydrates to reach an acceptable GL < 20 was predicted as 33.95 g per meal (median: 3.59 meals daily) with a regression coefficient of 37.33 across all daily diets. Diets with greater carbohydrates and more meals needed to reach acceptable GL < 20 included smoothies, convenient diets, and liquids. Mexican diets were the common predictor for GI and carbohydrates per meal to reach acceptable GL < 20; with smoothies (12.04), high-school (5.75), fast-food (4.48), Korean (4.30), Chinese (3.93), and liquid diets (3.71) presenting a higher median number of meals. These findings could be used to manage diets for various populations in the precision-based e-health era.

摘要

为了在电子健康时代实现个性化营养,我们研究了各种现代饮食(n=131)中健康饮食参数(包括健康饮食指数(HEI)、血糖指数(GI)和血糖负荷(GL))的预测因子。我们使用营养数据系统研究计算机软件和基于人工智能机器学习的预测验证分析,将 HEI 领域、热量来源和各种饮食作为潜在的可调节因素纳入分析。HEI 的预测因子包括全水果和全谷物以及空卡路里。碳水化合物是 GI 和 GL 的共同预测因子,总水果和墨西哥饮食是 GI 的其他预测因子。达到可接受 GL < 20 的碳水化合物的中位数预测量为每餐 33.95 克(中位数:每天 3.59 餐),所有日常饮食的回归系数为 37.33。需要更多碳水化合物和更多餐数才能达到可接受 GL < 20 的饮食包括冰沙、方便饮食和液体。墨西哥饮食是 GI 和达到可接受 GL < 20 的每餐碳水化合物的共同预测因子;冰沙(12.04)、高中(5.75)、快餐(4.48)、韩国(4.30)、中国(3.93)和液体饮食(3.71)每餐的中位数最高。这些发现可用于在精准电子健康时代管理各种人群的饮食。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b7/10005628/cd61ee06a763/nutrients-15-01263-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验