基于人工智能的膳食摄入量评估方法的有效性和准确性:一项系统综述。
Validity and accuracy of artificial intelligence-based dietary intake assessment methods: a systematic review.
作者信息
Cofre Sebastián, Sanchez Camila, Quezada-Figueroa Gladys, López-Cortés Xaviera A
机构信息
School of Nutrition and Dietetics, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.
PhD in Epidemiology Program, School of Public Health, Pontificia Universidad Católica de Chile, Santiago, Chile.
出版信息
Br J Nutr. 2025 May 14;133(9):1241-1253. doi: 10.1017/S0007114525000522. Epub 2025 Apr 10.
One of the most significant challenges in research related to nutritional epidemiology is the achievement of high accuracy and validity of dietary data to establish an adequate link between dietary exposure and health outcomes. Recently, the emergence of artificial intelligence (AI) in various fields has filled this gap with advanced statistical models and techniques for nutrient and food analysis. We aimed to systematically review available evidence regarding the validity and accuracy of AI-based dietary intake assessment methods (AI-DIA). In accordance with PRISMA guidelines, an exhaustive search of the EMBASE, PubMed, Scopus and Web of Science databases was conducted to identify relevant publications from their inception to 1 December 2024. Thirteen studies that met the inclusion criteria were included in this analysis. Of the studies identified, 61·5 % were conducted in preclinical settings. Likewise, 46·2 % used AI techniques based on deep learning and 15·3 % on machine learning. Correlation coefficients of over 0·7 were reported in six articles concerning the estimation of calories between the AI and traditional assessment methods. Similarly, six studies obtained a correlation above 0·7 for macronutrients. In the case of micronutrients, four studies achieved the correlation mentioned above. A moderate risk of bias was observed in 61·5 % ( 8) of the articles analysed, with confounding bias being the most frequently observed. AI-DIA methods are promising, reliable and valid alternatives for nutrient and food estimations. However, more research comparing different populations is needed, as well as larger sample sizes, to ensure the validity of the experimental designs.
营养流行病学相关研究中最重大的挑战之一,是要实现饮食数据的高精度和有效性,以便在饮食暴露与健康结果之间建立充分的联系。最近,人工智能(AI)在各个领域的出现,用先进的统计模型和营养及食物分析技术填补了这一空白。我们旨在系统回顾关于基于人工智能的饮食摄入量评估方法(AI-DIA)的有效性和准确性的现有证据。根据PRISMA指南,对EMBASE、PubMed、Scopus和Web of Science数据库进行了详尽搜索,以识别从其创刊到2024年12月1日的相关出版物。本分析纳入了13项符合纳入标准的研究。在已识别的研究中,61.5%是在临床前环境中进行的。同样,46.2%使用基于深度学习的人工智能技术,15.3%使用机器学习技术。六篇关于人工智能与传统评估方法之间卡路里估计的文章报告了超过0.7的相关系数。同样,六项研究在常量营养素方面获得了高于0.7的相关性。在微量营养素方面,四项研究达到了上述相关性。在分析的文章中,61.5%(8篇)观察到中等偏倚风险,其中混杂偏倚是最常观察到的。AI-DIA方法是营养和食物估计中有前景、可靠且有效的替代方法。然而,需要更多比较不同人群的研究,以及更大的样本量,以确保实验设计的有效性。
相似文献
Cochrane Database Syst Rev. 2015-6-23
Cochrane Database Syst Rev. 2023-11-15
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2024-10-17
Cochrane Database Syst Rev. 2020-10-19
本文引用的文献
Therap Adv Gastroenterol. 2022-12-26