Suppr超能文献

综述:形状记忆合金的神经网络建模

Review of Neural Network Modeling of Shape Memory Alloys.

机构信息

CNRS, Clermont Auvergne INP, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.

出版信息

Sensors (Basel). 2022 Jul 27;22(15):5610. doi: 10.3390/s22155610.

Abstract

Shape memory materials are smart materials that stand out because of several remarkable properties, including their shape memory effect. Shape memory alloys (SMAs) are largely used members of this family and have been innovatively employed in various fields, such as sensors, actuators, robotics, aerospace, civil engineering, and medicine. Many conventional, unconventional, experimental, and numerical methods have been used to study the properties of SMAs, their models, and their different applications. These materials exhibit nonlinear behavior. This fact complicates the use of traditional methods, such as the finite element method, and increases the computing time necessary to adequately model their different possible shapes and usages. Therefore, a promising solution is to develop new methodological approaches based on artificial intelligence (AI) that aims at efficient computation time and accurate results. AI has recently demonstrated some success in efficiently modeling SMA features with machine- and deep-learning methods. Notably, artificial neural networks (ANNs), a subsection of deep learning, have been applied to characterize SMAs. The present review highlights the importance of AI in SMA modeling and introduces the deep connection between ANNs and SMAs in the medical, robotic, engineering, and automation fields. After summarizing the general characteristics of ANNs and SMAs, we analyze various ANN types used for modeling the properties of SMAs according to their shapes, e.g., a wire as an actuator, a wire with a spring bias, wire systems, magnetic and porous materials, bars and rings, and reinforced concrete beams. The description focuses on the techniques used for NN architectures and learning.

摘要

形状记忆材料是一种具有多种显著特性的智能材料,其中最突出的是其形状记忆效应。形状记忆合金(SMA)是该家族中的主要成员,已被创新性地应用于多个领域,如传感器、执行器、机器人技术、航空航天、土木工程和医学。许多传统的、非常规的、实验的和数值的方法已经被用于研究 SMA 的特性、它们的模型以及它们的不同应用。这些材料表现出非线性行为。这一事实使得传统方法(如有限元法)的使用变得复杂,并增加了充分模拟其不同可能形状和用途所需的计算时间。因此,一个有前途的解决方案是开发基于人工智能(AI)的新方法,旨在实现高效的计算时间和准确的结果。人工智能最近在利用机器和深度学习方法高效地模拟 SMA 特性方面取得了一些成功。特别是,人工神经网络(ANNs),深度学习的一个分支,已经被应用于 SMA 的特性描述。本综述强调了人工智能在 SMA 建模中的重要性,并介绍了神经网络和 SMA 在医学、机器人技术、工程和自动化领域的深入联系。在总结了 ANNs 和 SMA 的一般特性之后,我们根据 SMA 的形状分析了各种用于建模 SMA 特性的 ANN 类型,例如作为执行器的金属丝、带有弹簧偏置的金属丝、金属丝系统、磁性和多孔材料、棒和环以及钢筋混凝土梁。描述重点在于用于 NN 架构和学习的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3f/9370891/ec094415411b/sensors-22-05610-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验