Suppr超能文献

基于长短期记忆神经网络的形状记忆合金驱动器模型

Model of Shape Memory Alloy Actuator with the Usage of LSTM Neural Network.

作者信息

Rączka Waldemar, Sibielak Marek

机构信息

Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.

出版信息

Materials (Basel). 2024 Jun 25;17(13):3114. doi: 10.3390/ma17133114.

Abstract

Shape Memory Alloys (SMAs) are used to design actuators, which are one of the most fascinating applications of SMA. Usually, they are on-off actuators because, in the case of continuous actuators, the nonlinearity of their characteristics is the problem. The main problem, especially in control systems in these actuators, is a hysteretic loop. There are many models of hysteresis, but from a control theory point of view, they are not helpful. This study used an artificial neural network (ANN) to model the SMA actuator hysteresis. The ANN structure and training method are presented in the paper. Data were generated from the Preisach model for training. This approach allowed for quick and controllable data generation, making experiments thoroughly planned and repeatable. The advantage and disadvantage of this approach is the lack of disturbances. The paper's main goal is to model an SMA actuator. Additionally, it explores whether and how an ANN can describe and model the hysteresis loop. A literature review shows that ANNs are used to model hysteresis, but to a limited extent; this means that the hysteresis loop was modelled with a hysteretic element.

摘要

形状记忆合金(SMA)被用于设计致动器,这是SMA最引人入胜的应用之一。通常,它们是开关式致动器,因为对于连续致动器而言,其特性的非线性是个问题。主要问题,尤其是在这些致动器的控制系统中,是滞后回线。有许多滞后模型,但从控制理论的角度来看,它们并无帮助。本研究使用人工神经网络(ANN)对SMA致动器滞后进行建模。论文中介绍了ANN结构和训练方法。数据由Preisach模型生成用于训练。这种方法能够快速且可控地生成数据,使实验得以全面规划且可重复。此方法的优点和缺点是缺乏干扰。论文的主要目标是对SMA致动器进行建模。此外,它还探讨了ANN是否以及如何能够描述和建模滞后回线。文献综述表明,ANN被用于对滞后进行建模,但程度有限;这意味着滞后回线是用一个滞后元件进行建模的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a39/11242166/9bfba5336017/materials-17-03114-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验