Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France.
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.
Chemphyschem. 2022 Oct 6;23(19):e202200192. doi: 10.1002/cphc.202200192. Epub 2022 Aug 12.
Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.
可光开关荧光蛋白是高级生物成像的重要标记物,其光物理性质的优化是提高性能和开拓新应用的基础。在这里,我们建立了光开关对比度(决定纳米显微镜应用中可达到分辨率的关键参数之一)与 rsEGFP2 非荧光状态下发色团构象之间的联系,rsEGFP2 是 REversible Saturable OpticaL Fluorescence Transitions(RESOLFT)显微镜中广泛应用的一种标记物。在光照下,rsEGFP2 的顺式发色团异构化为两种不同的非荧光态构象,即 trans1 和 trans2,分别位于 V151 侧链的两侧。减小或增大该位置的侧链(V151A 和 V151L 变体)会导致分别具有更高和更低光开关对比度的单一非荧光态构象,与 rsEGFP2 亲本相比。通过连续飞秒晶体学获得的结构信息与高水平量子化学计算以及在体外确定的光谱和光物理数据相结合,表明光开关对比度的变化源于 trans1 和 trans2 分别对应的吸收带的蓝移和红移。因此,由于 trans2 的消除,rsEGFP2 的 V151A 变体及其超折叠变体 rsFolder2 的光开关对比度比其相应的亲本蛋白都高两倍以上,无论是在体外还是在大肠杆菌细胞中。rsFolder2-V151A 变体在 RESOLFT 纳米显微镜中的应用得到了证明。我们的研究合理地解释了结构和光物理发色团性质之间的联系,并提出了一种合理改进用于纳米显微镜应用的荧光蛋白的方法。