Suppr超能文献

人工智能辅助的前列腺癌双参数 MRI 监测:可行性研究。

AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study.

机构信息

Department of Radiology, University Medical Center Groningen, Kochstraat 250, 9728 KL, Groningen, the Netherlands.

Department of Medical Imaging, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, the Netherlands.

出版信息

Eur Radiol. 2023 Jan;33(1):89-96. doi: 10.1007/s00330-022-09032-7. Epub 2022 Aug 12.

Abstract

OBJECTIVES

To evaluate the feasibility of automatic longitudinal analysis of consecutive biparametric MRI (bpMRI) scans to detect clinically significant (cs) prostate cancer (PCa).

METHODS

This retrospective study included a multi-center dataset of 1513 patients who underwent bpMRI (T2 + DWI) between 2014 and 2020, of whom 73 patients underwent at least two consecutive bpMRI scans and repeat biopsies. A deep learning PCa detection model was developed to produce a heatmap of all PIRADS ≥ 2 lesions across prior and current studies. The heatmaps for each patient's prior and current examination were used to extract differential volumetric and likelihood features reflecting explainable changes between examinations. A machine learning classifier was trained to predict from these features csPCa (ISUP > 1) at the current examination according to biopsy. A classifier trained on the current study only was developed for comparison. An extended classifier was developed to incorporate clinical parameters (PSA, PSA density, and age). The cross-validated diagnostic accuracies were compared using ROC analysis. The diagnostic performance of the best model was compared to the radiologist scores.

RESULTS

The model including prior and current study (AUC 0.81, CI: 0.69, 0.91) resulted in a higher (p = 0.04) diagnostic accuracy than the current only model (AUC 0.73, CI: 0.61, 0.84). Adding clinical variables further improved diagnostic performance (AUC 0.86, CI: 0.77, 0.93). The diagnostic performance of the surveillance AI model was significantly better (p = 0.02) than of radiologists (AUC 0.69, CI: 0.54, 0.81).

CONCLUSIONS

Our proposed AI-assisted surveillance of prostate MRI can pick up explainable, diagnostically relevant changes with promising diagnostic accuracy.

KEY POINTS

• Sequential prostate MRI scans can be automatically evaluated using a hybrid deep learning and machine learning approach. • The diagnostic accuracy of our csPCa detection AI model improved by including clinical parameters.

摘要

目的

评估对连续双参数 MRI(bpMRI)扫描进行自动纵向分析以检测临床显著(cs)前列腺癌(PCa)的可行性。

方法

这项回顾性研究纳入了 2014 年至 2020 年间在多中心接受 bpMRI(T2+DWI)检查的 1513 例患者,其中 73 例患者至少接受了两次连续 bpMRI 扫描和重复活检。开发了一种深度学习 PCa 检测模型,以生成所有 PIRADS≥2 病变的热图,这些病变来自于之前和当前的研究。使用每个患者之前和当前检查的热图来提取反映检查之间可解释变化的差异体积和可能性特征。根据活检,使用这些特征训练机器学习分类器来预测当前检查中的 csPCa(ISUP>1)。开发了一个仅基于当前研究的分类器进行比较。开发了一个扩展分类器来纳入临床参数(PSA、PSA 密度和年龄)。使用 ROC 分析比较了交叉验证的诊断准确性。比较了最佳模型的诊断性能与放射科医生评分。

结果

包括之前和当前研究的模型(AUC 0.81,CI:0.69,0.91)比仅当前研究的模型(AUC 0.73,CI:0.61,0.84)具有更高的诊断准确性(p=0.04)。添加临床变量进一步提高了诊断性能(AUC 0.86,CI:0.77,0.93)。监测 AI 模型的诊断性能明显优于放射科医生(p=0.02)(AUC 0.69,CI:0.54,0.81)。

结论

我们提出的使用人工智能辅助前列腺 MRI 监测可以发现具有有前景的诊断准确性的可解释、具有诊断相关性的变化。

关键点

• 可以使用混合深度学习和机器学习方法自动评估连续前列腺 MRI 扫描。• 通过纳入临床参数,我们的 csPCa 检测 AI 模型的诊断准确性得到提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdea/9755080/563fa2ba0b04/330_2022_9032_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验