IEEE Trans Med Imaging. 2019 Nov;38(11):2496-2506. doi: 10.1109/TMI.2019.2901928. Epub 2019 Feb 27.
Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
多参数 MRI(mp-MRI)被认为是诊断前列腺癌(PCa)的最佳无创成像方式。然而,mp-MRI 目前在用于 PCa 诊断时受到定性或半定量解读标准的限制,导致了读者间的变异性和评估病变侵袭性的能力不足。卷积神经网络(CNNs)是一种强大的方法,可以自动学习各种任务的鉴别特征,包括癌症检测。我们提出了一种新的多类 CNN,FocalNet,用于联合检测 PCa 病变并预测其侵袭性,使用 Gleason 评分(GS)。FocalNet 描述了病变的侵袭性,并充分利用了 mp-MRI 中的独特知识。我们从 417 名接受 3T mp-MRI 检查的患者中收集了前列腺 mp-MRI 数据集,这些患者在机器人辅助腹腔镜前列腺切除术前接受了检查。FocalNet 在这个大型研究队列中进行了训练和五重交叉验证评估。在病变检测的自由响应接收者操作特征(FROC)分析中,FocalNet 在每位患者的一个假阳性率下分别达到了 89.7%和 87.9%的索引病变和临床显著病变的灵敏度。对于 GS 分类,通过接收者操作特征(ROC)分析进行评估,FocalNet 在分类临床上显著的 PCa(GS≥3+4)和 GS≥4+3 的 PCa 时,获得了 0.81 和 0.79 的曲线下面积。与当前诊断指南下放射科医生的前瞻性表现进行比较,FocalNet 显示出与索引病变和临床显著病变的检测灵敏度相当,仅比经验丰富的放射科医生低 3.4%和 1.5%,但没有统计学意义。