From the Molecular Imaging Branch (E.C.Y., S.A.H., M.J.B., Y.L., D.G.G., K.B.O., N.S.L., P.E., P.L.C., B.T.), Biometric Research Program, Division of Cancer Treatment and Diagnosis (E.P.H.), Center for Interventional Oncology (L.A.H., C.G., B.J.W.), Department of Radiology, Clinical Center (L.A.H., C.G., B.J.W.), Laboratory of Pathology (A.T., M.J.M.), and Urologic Oncology Branch (S.G., P.A.P.), National Cancer Institute, National Institutes of Health, 10 Center Dr, MSC 1182, Bldg 10, Rm B3B85, Bethesda, MD 20892; Department of Radiology, Singapore General Hospital, Singapore (Y.M.L.); and NVIDIA Corporation, Santa Clara, Calif (D.Y., Z.X., J.T., D.X.).
Radiol Imaging Cancer. 2024 Nov;6(6):e240050. doi: 10.1148/rycan.240050.
Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL [IQR, 0.10-0.22 ng/mL]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans ( < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans ( < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; = .005), larger lesion diameter (OR = 3.96; < .001), better diffusion-weighted MRI quality (OR = 1.53; = .02), and fewer lesions at MRI (OR = 0.78; = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; = .03) and larger lesion size (OR = 10.19; < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. MR Imaging, Urinary, Prostate © RSNA, 2024.
目的 评估人工智能 (AI) 模型在检测外部和内部双参数 MRI (bpMRI) 扫描配对的前列腺癌 (PCa) 总病变和临床显著病变 (csPCa) 中的性能,并评估每个数据集之间的性能差异。
材料与方法 本单中心回顾性研究纳入了 2015 年 5 月至 2022 年 5 月在外部机构接受前列腺 MRI 检查并在作者所在机构重新扫描的患者。泌尿生殖放射科医生在内部 MRI 扫描后根据前列腺成像报告和数据系统 (PI-RADS) 版本 2.0 或 2.1 进行前瞻性读片,并对所有扫描进行回顾性图像质量评估。一部分患者接受了 MRI/US 融合引导活检。先前使用完全独立数据集开发的基于 bpMRI 的病变检测 AI 模型在两个 MRI 数据集上进行了测试。使用配对比较置换检验比较外部和内部数据集之间的检测率。使用多变量广义混合效应模型评估与 AI 检测性能相关的因素,该模型基于 Akaike 信息准则通过逐步正向回归选择特征。
结果 该研究纳入了 201 名男性患者(中位年龄,66 岁 [IQR,62-70 岁];前列腺特异性抗原密度,0.14 ng/mL [IQR,0.10-0.22 ng/mL]),外部和内部 MRI 扫描之间的中位间隔为 182 天(IQR,97-383 天)。对于前列腺内病变,AI 在外部 MRI 扫描中检测到 39.7%(149/375),在内部 MRI 扫描中检测到 56.0%(210/375)(<.001)。对于 csPCa 阳性病变,AI 在外部 MRI 扫描中检测到 61%(54/89),在内部 MRI 扫描中检测到 79%(70/89)(<.001)。在外部 MRI 扫描中,更好的整体病变检测与更高的 PI-RADS 评分(比值比 [OR] = 1.57; =.005)、更大的病变直径(OR = 3.96; <.001)、更好的弥散加权 MRI 质量(OR = 1.53; =.02)和更少的病变有关(OR = 0.78; =.045)。更好的 csPCa 检测与外部和内部 MRI 扫描之间较短的 MRI 间隔(OR = 0.58; =.03)和更大的病变大小(OR = 10.19; <.001)相关。
结论 AI 模型在外部 bpMRI 扫描中检测整体和 csPCa 阳性病变的表现中等。