Suppr超能文献

使用图卷积神经网络对发育中的人类心脏中的细胞类型特征进行从头时空建模。

De novo spatiotemporal modelling of cell-type signatures in the developmental human heart using graph convolutional neural networks.

作者信息

Marco Salas Sergio, Yuan Xiao, Sylven Christer, Nilsson Mats, Wählby Carolina, Partel Gabriele

机构信息

Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.

Department of Information Technology and Science for Life Laboratory Uppsala University, Uppsala, Sweden.

出版信息

PLoS Comput Biol. 2022 Aug 12;18(8):e1010366. doi: 10.1371/journal.pcbi.1010366. eCollection 2022 Aug.

Abstract

With the emergence of high throughput single cell techniques, the understanding of the molecular and cellular diversity of mammalian organs have rapidly increased. In order to understand the spatial organization of this diversity, single cell data is often integrated with spatial data to create probabilistic cell maps. However, targeted cell typing approaches relying on existing single cell data achieve incomplete and biased maps that could mask the true diversity present in a tissue slide. Here we applied a de novo technique to spatially resolve and characterize cellular diversity of in situ sequencing data during human heart development. We obtained and made accessible well defined spatial cell-type maps of fetal hearts from 4.5 to 9 post conception weeks, not biased by probabilistic cell typing approaches. With our analysis, we could characterize previously unreported molecular diversity within cardiomyocytes and epicardial cells and identified their characteristic expression signatures, comparing them with specific subpopulations found in single cell RNA sequencing datasets. We further characterized the differentiation trajectories of epicardial cells, identifying a clear spatial component on it. All in all, our study provides a novel technique for conducting de novo spatial-temporal analyses in developmental tissue samples and a useful resource for online exploration of cell-type differentiation during heart development at sub-cellular image resolution.

摘要

随着高通量单细胞技术的出现,对哺乳动物器官分子和细胞多样性的理解迅速增加。为了理解这种多样性的空间组织,单细胞数据通常与空间数据整合以创建概率性细胞图谱。然而,依赖现有单细胞数据的靶向细胞分型方法得到的图谱不完整且有偏差,可能会掩盖组织切片中存在的真实多样性。在此,我们应用一种从头技术在人类心脏发育过程中对原位测序数据的细胞多样性进行空间解析和表征。我们获得并提供了受孕后4.5至9周胎儿心脏明确的空间细胞类型图谱,不受概率性细胞分型方法的影响。通过我们的分析,我们能够表征心肌细胞和心外膜细胞中先前未报道的分子多样性,并确定它们的特征性表达特征,将它们与单细胞RNA测序数据集中发现的特定亚群进行比较。我们进一步表征了心外膜细胞的分化轨迹,确定了其上一个明确的空间成分。总而言之,我们的研究提供了一种在发育组织样本中进行从头时空分析的新技术,以及一个在亚细胞图像分辨率下在线探索心脏发育过程中细胞类型分化的有用资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验