Chelebian Eduard, Avenel Christophe, Wählby Carolina
Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden.
Nat Commun. 2025 May 13;16(1):4452. doi: 10.1038/s41467-025-58989-8.
Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.
空间转录组学通过保留基因表达模式的空间背景,改变了我们对组织结构的理解。同时,成像人工智能的进展使得能够提取描述组织的形态学特征。本综述介绍了一个框架,用于对将空间转录组学与组织形态学相结合的方法进行分类,重点是将形态学特征转化或整合到空间转录组学中。转化涉及利用形态学来预测基因表达、创建超分辨率图谱或从苏木精-伊红(H&E)染色样本中推断遗传信息。整合则通过识别补充基因表达的形态学特征来丰富空间转录组学。我们还探讨了这一新兴领域的学习策略和未来方向。