Suppr超能文献

深度学习在颅内动脉瘤检测中的性能:系统评价和荟萃分析。

Performance of deep learning in the detection of intracranial aneurysm: A systematic review and meta-analysis.

机构信息

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215002, China.

出版信息

Eur J Radiol. 2022 Oct;155:110457. doi: 10.1016/j.ejrad.2022.110457. Epub 2022 Jul 29.

Abstract

PURPOSE

Early detection and diagnosis of intracranial aneurysms (IAs) are particularly critical. Deep learning models (DLMs) are now widely used in the diagnosis of various diseases. Different DLMs have been developed to detect IAs. However, the overall performance of various DLMs for detecting IAs has not been evaluated. We aimed at exploring the performance of DLMs in the detection of IAs and measuring the effect of DLMs in assisting clinicians.

METHODS

A diagnostic accuracy meta-analysis using a mixed-effect binary regression model was performed to estimate accuracy in patient-level and lesion-level. Moreover, the effect in assisting clinicians was measured by a random-effect meta-analysis.

RESULTS

Twenty cohort studies including a total of 17 DLMs were assessed eligible in the present study. We summarized that DLMs had both high sensitivity (0.92, 95 % CI: 0.85 to 0.96) and specificity (0.96, 95 % CI: 0.94 to 0.97) in the detection of IAs in patient-level. In lesion-level, we also found a high summary sensitivity of 0.92 (95 % CI: 0.87 to 0.95). Moreover, assisted by DLMs, the sensitivity of clinicians became higher (Risk ratio: 1.09, P-value: 0.0006), with no effect on the specificity in diagnosis (Risk ratio: 0.99, P-value: 0.53). The reading time was reduced by the assistance of the deep learning model. (Mean difference: -7.37, P-value: 0.0077) CONCLUSIONS: DLMs have the competence of detecting IAs accurately. Moreover, DLMs can improve clinicians' sensitivity and reduce the reading time without affecting the specificity in diagnosing IAs.

摘要

目的

颅内动脉瘤(IA)的早期检测和诊断尤为关键。深度学习模型(DLM)现已广泛应用于各种疾病的诊断。已经开发了不同的 DLM 来检测 IA。然而,各种用于检测 IA 的 DLM 的总体性能尚未得到评估。我们旨在探讨 DLM 在检测 IA 中的性能,并衡量 DLM 在协助临床医生方面的效果。

方法

使用混合效应二项回归模型进行诊断准确性荟萃分析,以估计患者水平和病变水平的准确性。此外,通过随机效应荟萃分析来衡量对临床医生的帮助效果。

结果

本研究评估了 20 项队列研究,共纳入了 17 个 DLM。我们总结出,DLM 在患者水平检测 IA 时具有较高的敏感性(0.92,95%置信区间:0.85 至 0.96)和特异性(0.96,95%置信区间:0.94 至 0.97)。在病变水平,我们还发现汇总敏感性较高,为 0.92(95%置信区间:0.87 至 0.95)。此外,DLM 辅助后,临床医生的敏感性更高(风险比:1.09,P 值:0.0006),对诊断特异性无影响(风险比:0.99,P 值:0.53)。深度学习模型的辅助减少了阅读时间。(均数差:-7.37,P 值:0.0077)

结论

DLM 具有准确检测 IA 的能力。此外,DLM 可以提高临床医生的敏感性,减少阅读时间,而不影响诊断 IA 的特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验