Suppr超能文献

卷积网络模型在颅内动脉瘤检测中的应用:系统评价和荟萃分析。

Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis.

机构信息

Research center for neuromodulation and pain, Shiraz, Iran.

Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Interv Neuroradiol. 2023 Dec;29(6):738-747. doi: 10.1177/15910199221097475. Epub 2022 May 13.

Abstract

INTRODUCTION

Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms.

METHODS

Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity.

RESULTS

Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2-93/2%) and specificity of 94/6% (CI: 0/914-0/966). CTA was the most sensitive modality (92.0%(CI:85/2-95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians' sensitivity increased to 12/8% and interrater agreement to 0/193.

CONCLUSION

CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.

摘要

介绍

颅内动脉瘤在人类中发病率很高。如果破裂,其疾病负担很重,死亡率也很高。卷积神经网络(CNN)是一种深度学习架构,已被证明在检测颅内动脉瘤方面非常有效。

方法

使用人工智能、颅内动脉瘤及其同义词搜索四个数据库,以找到符合条件的研究。本综述纳入了应用 CNN 检测颅内动脉瘤的文章。试图提取模型和人类读者对动脉瘤的形态、大小和位置的检测的敏感性和特异性。使用 CMA 2 分析时,首选随机模型来确定汇总敏感性和特异性。

结果

总体而言,本综述使用了 20 项研究。深度学习模型可以检测颅内动脉瘤,其敏感性为 90/6%(CI:87/2-93/2%),特异性为 94/6%(CI:0/966)。CTA 是最敏感的模态(92.0%(CI:85/2-95/8%))。模型对大于 3mm 的动脉瘤的总体敏感性均高于 98%(98%-100%),而对小于 3mm 的动脉瘤的敏感性为 74.6%。在人工智能的辅助下,临床医生的敏感性提高到 12/8%,组内一致性提高到 0/193。

结论

CNN 模型对颅内动脉瘤的检测具有可接受的敏感性,在某些领域优于人类读者。深度学习模型的合理应用方法是将其用作功能强大的辅助工具。从本质上讲,深度学习模型是一项开创性的技术,可以帮助临床医生更准确地诊断颅内动脉瘤。

相似文献

1
Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis.
Interv Neuroradiol. 2023 Dec;29(6):738-747. doi: 10.1177/15910199221097475. Epub 2022 May 13.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
7
Duplex ultrasound for diagnosing symptomatic carotid stenosis in the extracranial segments.
Cochrane Database Syst Rev. 2022 Jul 11;7(7):CD013172. doi: 10.1002/14651858.CD013172.pub2.
9
Clinical judgement by primary care physicians for the diagnosis of all-cause dementia or cognitive impairment in symptomatic people.
Cochrane Database Syst Rev. 2022 Jun 16;6(6):CD012558. doi: 10.1002/14651858.CD012558.pub2.
10
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

引用本文的文献

1
Automated Method for Intracranial Aneurysm Classification Using Deep Learning.
Sensors (Basel). 2024 Jul 14;24(14):4556. doi: 10.3390/s24144556.
2
4
Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis.
J Neurointerv Surg. 2023 Mar;15(3):262-271. doi: 10.1136/jnis-2022-019456. Epub 2022 Nov 14.

本文引用的文献

1
A Deep Learning Model with High Standalone Performance for Diagnosis of Unruptured Intracranial Aneurysm.
Yonsei Med J. 2021 Nov;62(11):1052-1061. doi: 10.3349/ymj.2021.62.11.1052.
2
Deep Learning-Based Software Improves Clinicians' Detection Sensitivity of Aneurysms on Brain TOF-MRA.
AJNR Am J Neuroradiol. 2021 Oct;42(10):1769-1775. doi: 10.3174/ajnr.A7242. Epub 2021 Aug 12.
4
Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA.
Interv Neuroradiol. 2021 Oct;27(5):648-657. doi: 10.1177/15910199211000956. Epub 2021 Mar 9.
5
Toward human intervention-free clinical diagnosis of intracranial aneurysm via deep neural network.
Patterns (N Y). 2021 Jan 22;2(2):100197. doi: 10.1016/j.patter.2020.100197. eCollection 2021 Feb 12.
6
Convolutional neural networks in medical image understanding: a survey.
Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3. Epub 2021 Jan 3.
9
Incidence and Outcome of Aneurysmal Subarachnoid Hemorrhage: The Swiss Study on Subarachnoid Hemorrhage (Swiss SOS).
Stroke. 2021 Jan;52(1):344-347. doi: 10.1161/STROKEAHA.120.029538. Epub 2020 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验