Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.
Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
Sci Rep. 2022 Aug 12;12(1):13725. doi: 10.1038/s41598-022-16765-4.
Ascaris species are soil-transmitted helminths that infect humans and livestock mainly in low and middle-income countries. Benzimidazole (BZ) class drugs have predominated for many years in the treatment of Ascaris infections, but persistent use of BZs has already led to widespread resistance in other nematodes, and treatment failure is emerging for Ascaris. Benzimidazoles act by binding to β-tubulin proteins and destabilising microtubules. Three mutations in the β-tubulin protein family are associated with BZ resistance. Seven shared β-tubulin isotypes were identified in Ascaris lumbricoides and A. suum genomes. Benzimidazoles were predicted to bind to all β-tubulin isotypes using in silico docking, demonstrating that the selectivity of BZs to interact with one or two β-tubulin isotypes is likely the result of isotype expression levels affecting the frequency of interaction. Ascaris β-tubulin isotype A clusters with helminth β-tubulins previously shown to interact with BZ. Molecular dynamics simulations using β-tubulin isotype A highlighted the key role of amino acid E198 in BZ-β-tubulin interactions. Simulations indicated that mutations at amino acids E198A and F200Y alter binding of BZ, whereas there was no obvious effect of the F167Y mutation. In conclusion, the key interactions vital for BZ binding with β-tubulins have been identified and show how mutations can lead to resistance in nematodes.
蛔虫是一种主要在中低收入国家感染人类和家畜的土壤传播性寄生虫。苯并咪唑(BZ)类药物多年来一直是治疗蛔虫感染的主要药物,但 BZ 的持续使用已经导致其他线虫广泛耐药,而蛔虫的治疗也开始失败。BZ 类药物通过与β-微管蛋白结合并破坏微管而起作用。β-微管蛋白家族中的三个突变与 BZ 耐药性有关。在蛔虫和猪蛔虫基因组中鉴定出了七个共享的β-微管蛋白同工型。通过计算机对接预测,苯并咪唑类药物可以与所有β-微管蛋白同工型结合,这表明 BZ 对与一个或两个β-微管蛋白同工型相互作用的选择性可能是同工型表达水平影响相互作用频率的结果。蛔虫β-微管蛋白同工型 A 与先前显示与 BZ 相互作用的蠕虫β-微管蛋白聚类。使用β-微管蛋白同工型 A 的分子动力学模拟突出了氨基酸 E198 在 BZ-β-微管蛋白相互作用中的关键作用。模拟表明,氨基酸 E198A 和 F200Y 的突变改变了 BZ 的结合,而 F167Y 突变则没有明显影响。总之,已经确定了苯并咪唑与β-微管蛋白结合的关键相互作用,并且显示了突变如何导致线虫产生耐药性。