Department of Ophthalmology, Yale School of Medicine, New Haven, CT, 06510, USA.
Division of Oculoplastics and Reconstructive Surgery, Wilmer Eye Institute, Baltimore, MD, 21287, USA.
Sci Rep. 2022 Aug 12;12(1):13775. doi: 10.1038/s41598-022-17709-8.
Optical coherence tomography angiography (OCTA) is an emerging non-invasive technique for imaging the retinal vasculature. While there are many promising clinical applications for OCTA, determination of image quality remains a challenge. We developed a deep learning-based system using a ResNet152 neural network classifier, pretrained using ImageNet, to classify images of the superficial capillary plexus in 347 scans from 134 patients. Images were also manually graded by two independent graders as a ground truth for the supervised learning models. Because requirements for image quality may vary depending on the clinical or research setting, two models were trained-one to identify high-quality images and one to identify low-quality images. Our neural network models demonstrated outstanding area under the curve (AUC) metrics for both low quality image identification (AUC = 0.99, 95%CI 0.98-1.00, [Formula: see text] = 0.90) and high quality image identification (AUC = 0.97, 95%CI 0.96-0.99, [Formula: see text] = 0.81), significantly outperforming machine-reported signal strength (AUC = 0.82, 95%CI 0.77-0.86, [Formula: see text]= 0.52 and AUC = 0.78, 95%CI 0.73-0.83, [Formula: see text] = 0.27 respectively). Our study demonstrates that techniques from machine learning may be used to develop flexible and robust methods for quality control of OCTA images.
光学相干断层扫描血管造影术(OCTA)是一种新兴的非侵入性技术,用于成像视网膜血管。虽然 OCTA 有许多有前途的临床应用,但图像质量的确定仍然是一个挑战。我们使用基于 ResNet152 神经网络分类器的深度学习系统,使用 ImageNet 进行预训练,对来自 134 名患者的 347 次扫描的浅层毛细血管丛图像进行分类。这些图像也由两名独立的评分者手动分级,作为监督学习模型的真实数据。由于图像质量的要求可能因临床或研究环境而异,因此我们训练了两个模型 - 一个用于识别高质量图像,另一个用于识别低质量图像。我们的神经网络模型在低质量图像识别(AUC = 0.99,95%CI 0.98-1.00,[Formula: see text] = 0.90)和高质量图像识别(AUC = 0.97,95%CI 0.96-0.99,[Formula: see text] = 0.81)方面均表现出出色的曲线下面积(AUC)指标,明显优于机器报告的信号强度(AUC = 0.82,95%CI 0.77-0.86,[Formula: see text]= 0.52 和 AUC = 0.78,95%CI 0.73-0.83,[Formula: see text] = 0.27)。我们的研究表明,机器学习技术可用于开发 OCTA 图像质量控制的灵活且强大的方法。