Napravnik Mateja, Hržić Franko, Urschler Martin, Miletić Damir, Štajduhar Ivan
Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000, Rijeka, Croatia.
Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia.
Sci Rep. 2025 Jul 1;15(1):21622. doi: 10.1038/s41598-025-05009-w.
Deep learning models require large amounts of annotated data, which are hard to obtain in the medical field, as the annotation process is laborious and depends on expert knowledge. This data scarcity hinders a model's ability to generalise effectively on unseen data, and recently, foundation models pretrained on large datasets have been proposed as a promising solution. RadiologyNET is a custom medical dataset that comprises 1,902,414 medical images covering various body parts and modalities of image acquisition. We used the RadiologyNET dataset to pretrain several popular architectures (ResNet18, ResNet34, ResNet50, VGG16, EfficientNetB3, EfficientNetB4, InceptionV3, DenseNet121, MobileNetV3Small and MobileNetV3Large). We compared the performance of ImageNet and RadiologyNET foundation models against training from randomly initialiased weights on several publicly available medical datasets: (i) Segmentation-LUng Nodule Analysis Challenge, (ii) Regression-RSNA Pediatric Bone Age Challenge, (iii) Binary classification-GRAZPEDWRI-DX and COVID-19 datasets, and (iv) Multiclass classification-Brain Tumor MRI dataset. Our results indicate that RadiologyNET-pretrained models generally perform similarly to ImageNet models, with some advantages in resource-limited settings. However, ImageNet-pretrained models showed competitive performance when fine-tuned on sufficient data. The impact of modality diversity on model performance was tested, with the results varying across tasks, highlighting the importance of aligning pretraining data with downstream applications. Based on our findings, we provide guidelines for using foundation models in medical applications and publicly release our RadiologyNET-pretrained models to support further research and development in the field. The models are available at https://github.com/AIlab-RITEH/RadiologyNET-TL-models .
深度学习模型需要大量带注释的数据,而在医学领域很难获得这些数据,因为注释过程费力且依赖专业知识。这种数据稀缺阻碍了模型对未见数据进行有效泛化的能力,最近,在大型数据集上预训练的基础模型被提出作为一种有前景的解决方案。RadiologyNET是一个定制的医学数据集,包含1902414张医学图像,涵盖了身体的各个部位和各种图像采集方式。我们使用RadiologyNET数据集对几种流行的架构(ResNet18、ResNet34、ResNet50、VGG16、EfficientNetB3、EfficientNetB4、InceptionV3、DenseNet121、MobileNetV3Small和MobileNetV3Large)进行预训练。我们在几个公开可用的医学数据集上,将ImageNet和RadiologyNET基础模型的性能与从随机初始化权重开始训练的性能进行了比较:(i)分割 - 肺结节分析挑战赛,(ii)回归 - RSNA儿科骨龄挑战赛,(iii)二分类 - GRAZPEDWRI - DX和COVID - 19数据集,以及(iv)多分类 - 脑肿瘤MRI数据集。我们的结果表明,RadiologyNET预训练的模型通常与ImageNet模型表现相似,在资源有限的情况下具有一些优势。然而,在足够的数据上进行微调时,ImageNet预训练的模型表现出有竞争力的性能。测试了模态多样性对模型性能的影响,结果因任务而异,突出了使预训练数据与下游应用对齐的重要性。基于我们的发现,我们提供了在医学应用中使用基础模型的指导方针,并公开发布我们的RadiologyNET预训练模型,以支持该领域的进一步研究和开发。这些模型可在https://github.com/AIlab - RITEH/RadiologyNET - TL - models获取。
Cochrane Database Syst Rev. 2022-1-17
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2021-4-19
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2018-1-22
Cochrane Database Syst Rev. 2020-1-9
J Imaging Inform Med. 2025-2
Diagnostics (Basel). 2023-2-24
NPJ Digit Med. 2022-12-26
Radiol Artif Intell. 2022-7-27