文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从放射学NET基础模型中汲取的经验教训,用于医学放射学中的迁移学习。

Lessons learned from RadiologyNET foundation models for transfer learning in medical radiology.

作者信息

Napravnik Mateja, Hržić Franko, Urschler Martin, Miletić Damir, Štajduhar Ivan

机构信息

Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000, Rijeka, Croatia.

Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia.

出版信息

Sci Rep. 2025 Jul 1;15(1):21622. doi: 10.1038/s41598-025-05009-w.


DOI:10.1038/s41598-025-05009-w
PMID:40593000
Abstract

Deep learning models require large amounts of annotated data, which are hard to obtain in the medical field, as the annotation process is laborious and depends on expert knowledge. This data scarcity hinders a model's ability to generalise effectively on unseen data, and recently, foundation models pretrained on large datasets have been proposed as a promising solution. RadiologyNET is a custom medical dataset that comprises 1,902,414 medical images covering various body parts and modalities of image acquisition. We used the RadiologyNET dataset to pretrain several popular architectures (ResNet18, ResNet34, ResNet50, VGG16, EfficientNetB3, EfficientNetB4, InceptionV3, DenseNet121, MobileNetV3Small and MobileNetV3Large). We compared the performance of ImageNet and RadiologyNET foundation models against training from randomly initialiased weights on several publicly available medical datasets: (i) Segmentation-LUng Nodule Analysis Challenge, (ii) Regression-RSNA Pediatric Bone Age Challenge, (iii) Binary classification-GRAZPEDWRI-DX and COVID-19 datasets, and (iv) Multiclass classification-Brain Tumor MRI dataset. Our results indicate that RadiologyNET-pretrained models generally perform similarly to ImageNet models, with some advantages in resource-limited settings. However, ImageNet-pretrained models showed competitive performance when fine-tuned on sufficient data. The impact of modality diversity on model performance was tested, with the results varying across tasks, highlighting the importance of aligning pretraining data with downstream applications. Based on our findings, we provide guidelines for using foundation models in medical applications and publicly release our RadiologyNET-pretrained models to support further research and development in the field. The models are available at https://github.com/AIlab-RITEH/RadiologyNET-TL-models .

摘要

深度学习模型需要大量带注释的数据,而在医学领域很难获得这些数据,因为注释过程费力且依赖专业知识。这种数据稀缺阻碍了模型对未见数据进行有效泛化的能力,最近,在大型数据集上预训练的基础模型被提出作为一种有前景的解决方案。RadiologyNET是一个定制的医学数据集,包含1902414张医学图像,涵盖了身体的各个部位和各种图像采集方式。我们使用RadiologyNET数据集对几种流行的架构(ResNet18、ResNet34、ResNet50、VGG16、EfficientNetB3、EfficientNetB4、InceptionV3、DenseNet121、MobileNetV3Small和MobileNetV3Large)进行预训练。我们在几个公开可用的医学数据集上,将ImageNet和RadiologyNET基础模型的性能与从随机初始化权重开始训练的性能进行了比较:(i)分割 - 肺结节分析挑战赛,(ii)回归 - RSNA儿科骨龄挑战赛,(iii)二分类 - GRAZPEDWRI - DX和COVID - 19数据集,以及(iv)多分类 - 脑肿瘤MRI数据集。我们的结果表明,RadiologyNET预训练的模型通常与ImageNet模型表现相似,在资源有限的情况下具有一些优势。然而,在足够的数据上进行微调时,ImageNet预训练的模型表现出有竞争力的性能。测试了模态多样性对模型性能的影响,结果因任务而异,突出了使预训练数据与下游应用对齐的重要性。基于我们的发现,我们提供了在医学应用中使用基础模型的指导方针,并公开发布我们的RadiologyNET预训练模型,以支持该领域的进一步研究和开发。这些模型可在https://github.com/AIlab - RITEH/RadiologyNET - TL - models获取。

相似文献

[1]
Lessons learned from RadiologyNET foundation models for transfer learning in medical radiology.

Sci Rep. 2025-7-1

[2]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[3]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[4]
Advancing respiratory disease diagnosis: A deep learning and vision transformer-based approach with a novel X-ray dataset.

Comput Biol Med. 2025-8

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[8]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[9]
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.

Comput Biol Med. 2024-9

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

本文引用的文献

[1]
Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation.

Med Image Anal. 2025-5-2

[2]
Toward expert-level medical question answering with large language models.

Nat Med. 2025-3

[3]
Balancing Performance and Interpretability in Medical Image Analysis: Case study of Osteopenia.

J Imaging Inform Med. 2025-2

[4]
Building RadiologyNET: an unsupervised approach to annotating a large-scale multimodal medical database.

BioData Min. 2024-7-12

[5]
A whole-slide foundation model for digital pathology from real-world data.

Nature. 2024-6

[6]
Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation.

Diagnostics (Basel). 2023-2-24

[7]
A large language model for electronic health records.

NPJ Digit Med. 2022-12-26

[8]
A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning.

Clin Imaging. 2023-2

[9]
RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning.

Radiol Artif Intell. 2022-7-27

[10]
MSFR-Net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation.

Med Phys. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索