Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
Lifetime Data Anal. 2022 Oct;28(4):675-699. doi: 10.1007/s10985-022-09571-7. Epub 2022 Aug 13.
Dynamic (or varying) covariate effects often manifest meaningful physiological mechanisms underlying chronic diseases. However, a static view of covariate effects is typically adopted by standard approaches to evaluating disease prognostic factors, which can result in depreciation of some important disease markers. To address this issue, in this work, we take the perspective of globally concerned quantile regression, and propose a flexible testing framework suited to assess either constant or dynamic covariate effects. We study the powerful Kolmogorov-Smirnov (K-S) and Cramér-Von Mises (C-V) type test statistics and develop a simple resampling procedure to tackle their complicated limit distributions. We provide rigorous theoretical results, including the limit null distributions and consistency under a general class of alternative hypotheses of the proposed tests, as well as the justifications for the presented resampling procedure. Extensive simulation studies and a real data example demonstrate the utility of the new testing procedures and their advantages over existing approaches in assessing dynamic covariate effects.
动态(或变化)协变量效应通常表现出慢性疾病背后有意义的生理机制。然而,标准的疾病预后因素评估方法通常采用静态的协变量效应观点,这可能导致一些重要的疾病标志物被低估。为了解决这个问题,在这项工作中,我们从全局关注的分位数回归的角度出发,提出了一个灵活的测试框架,适合评估常数或动态协变量效应。我们研究了强大的 Kolmogorov-Smirnov (K-S) 和 Cramér-Von Mises (C-V) 型检验统计量,并开发了一种简单的重抽样程序来处理它们复杂的极限分布。我们提供了严格的理论结果,包括所提出检验的一般替代假设下的极限零分布和一致性,以及所提出的重抽样程序的合理性。广泛的模拟研究和一个真实数据示例证明了新的检验程序的实用性,以及它们在评估动态协变量效应方面相对于现有方法的优势。