Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Institut Superieur des Techniques Medicales de Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
Macromol Biosci. 2022 Oct;22(10):e2200201. doi: 10.1002/mabi.202200201. Epub 2022 Aug 19.
Chronic wounds are associated with infectious microbial complex communities called biofilms. The management of chronic wound infection is limited by the complexity of selecting an appropriate antimicrobial dressing with antibiofilm activity due to antimicrobial resistance in biofilms. Herein, the in situ developed bacterial cellulose/poly(vinyl alcohol) (BC-PVA) composite is ex situ modified with genipin-crosslinked silk sericin (SS) and azithromycin (AZM) (SSga). The composite is evaluated as a wound dressing material for preventing the development, dispersion, and/or eradication of microbial biofilm. Fourier transform infrared spectroscopy confirms the intermolecular interactions between the components of BC-PVA@SSga scaffolds. The addition of PVA during BC production significantly increases the porosity from 53.5% ± 2.3% to 83.5% ± 2.9%, the pore size from 2.3 ± 1.9 to 16.8 ± 4.5 µm, the fiber diameter from 35.5 ± 10 to 120 ± 27.4 nm, and improves the thermal stability and flexibility. Studies using bacteria and fungi indicate high inhibition and disruption of biofilms upon AZM addition. In vitro biocompatibility analysis confirms the nontoxic nature of BC-PVA@SSga toward HaCaT and NIH3T3 cells, whereas the addition of SS enhances cell proliferation. The developed BC-PVA@SSga accelerates wound healing in the infected mouse model, thus can be a promising wound dressing biomaterial.
慢性创面与被称为生物膜的感染性微生物复杂群落有关。由于生物膜中的抗生素耐药性,慢性创面感染的管理受到限制,难以选择具有抗生物膜活性的合适抗菌敷料。在此,通过原位开发的细菌纤维素/聚乙烯醇(BC-PVA)复合材料与京尼平交联丝胶(SS)和阿奇霉素(AZM)(SSga)进行了异位修饰。该复合材料被评估为一种用于预防微生物生物膜的形成、分散和/或消除的伤口敷料材料。傅里叶变换红外光谱证实了 BC-PVA@SSga 支架中各组分之间的分子间相互作用。在 BC 生产过程中添加 PVA 可使孔隙率从 53.5%±2.3%显著增加到 83.5%±2.9%,孔径从 2.3±1.9 增加到 16.8±4.5μm,纤维直径从 35.5±10μm 增加到 120±27.4nm,同时提高了热稳定性和柔韧性。细菌和真菌研究表明,AZM 的加入可高度抑制和破坏生物膜。体外细胞相容性分析证实 BC-PVA@SSga 对 HaCaT 和 NIH3T3 细胞无毒性,而 SS 的加入可增强细胞增殖。所开发的 BC-PVA@SSga 可加速感染小鼠模型中的伤口愈合,因此可能成为一种有前途的伤口敷料生物材料。