Suppr超能文献

基于挤出的 3D 打印的机器学习优化。

Machine learning-enabled optimization of extrusion-based 3D printing.

机构信息

Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey; Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey.

Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey.

出版信息

Methods. 2022 Oct;206:27-40. doi: 10.1016/j.ymeth.2022.08.002. Epub 2022 Aug 11.

Abstract

Machine learning (ML) and three-dimensional (3D) printing are among the fastest-growing branches of science. While ML can enable computers to independently learn from available data to make decisions with minimal human intervention, 3D printing has opened up an avenue for modern, multi-material, manufacture of complex 3D structures with a rapid turn-around ability for users with limited manufacturing experience. However, the determination of optimum printing parameters is still a challenge, increasing pre-printing process time and material wastage. Here, we present the first integration of ML and 3D printing through an easy-to-use graphical user interface (GUI) for printing parameter optimization. Unlike the widely held orthogonal design used in most of the 3D printing research, we, for the first time, used nine different computer-aided design (CAD) images and in order to enable ML algorithms to distinguish the difference between designs, we devised a self-designed method to calculate the "complexity index" of CAD designs. In addition, for the first time, the similarity of the print outcomes and CAD images are measured using four different self-designed labeling methods (both manually and automatically) to figure out the best labeling method for ML purposes. Subsequently, we trained eight ML algorithms on 224 datapoints to identify the best ML model for 3D printing applications. The "gradient boosting regression" model yields the best prediction performance with an R-2 score of 0.954. The ML-embedded GUI developed in this study enables users (either skilled or unskilled in 3D printing and/or ML) to simply upload a design (desired to print) to the GUI along with desired printing temperature and pressure to obtain the approximate similarity in the case of actual 3D printing of the uploaded design. This ultimately can prevent error-and-trial steps prior to printing which in return can speed up overall design-to-end-product time with less material waste and more cost-efficiency.

摘要

机器学习 (ML) 和三维 (3D) 打印是发展最快的科学分支之一。虽然 ML 可以使计算机能够从可用数据中独立学习,以便在最小的人为干预下做出决策,但 3D 打印为具有有限制造经验的用户提供了一种快速制造具有快速周转能力的现代、多材料、复杂 3D 结构的途径。然而,确定最佳打印参数仍然是一个挑战,这增加了打印前的过程时间和材料浪费。在这里,我们通过易于使用的图形用户界面 (GUI) 首次将 ML 和 3D 打印集成在一起,以优化打印参数。与大多数 3D 打印研究中广泛使用的正交设计不同,我们首次使用了九个不同的计算机辅助设计 (CAD) 图像,为了使 ML 算法能够区分设计之间的差异,我们设计了一种自行设计的方法来计算 CAD 设计的“复杂度指数”。此外,我们首次使用四种自行设计的标记方法(手动和自动)来测量打印结果和 CAD 图像的相似性,以找出最适合 ML 目的的标记方法。随后,我们在 224 个数据点上训练了八个 ML 算法,以确定最适合 3D 打印应用的 ML 模型。“梯度提升回归”模型的预测性能最佳,R-2 得分为 0.954。本研究中开发的嵌入 ML 的 GUI 使用户(无论是具有 3D 打印和/或 ML 技能还是没有技能的用户)只需将设计(要打印的设计)上传到 GUI 中,并上传设计的实际 3D 打印所需的打印温度和压力,即可获得上传设计的实际 3D 打印情况下的近似相似性。这最终可以防止打印前的错误和尝试步骤,从而缩短整体从设计到最终产品的时间,减少材料浪费,提高成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验