Department of Bioengineering, Stanford University, Clark Center E1.3 318 Campus Drive, Stanford, CA, 94305-5428, USA.
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China.
Ann Biomed Eng. 2023 Feb;51(2):377-393. doi: 10.1007/s10439-022-03038-4. Epub 2022 Aug 13.
We previously introduced and verified the reduced unified continuum formulation for vascular fluid-structure interaction (FSI) against Womersley's deformable wall theory. Our present work seeks to investigate its performance in a patient-specific aortic setting in which assumptions of idealized geometries and velocity profiles are invalid. Specifically, we leveraged 2D magnetic resonance imaging (MRI) and 4D-flow MRI to extract high-resolution anatomical and hemodynamic information from an in vitro flow circuit embedding a compliant 3D-printed aortic phantom. To accurately reflect experimental conditions, we numerically implemented viscoelastic external tissue support, vascular tissue prestressing, and skew boundary conditions enabling in-plane vascular motion at each inlet and outlet. Validation of our formulation is achieved through close quantitative agreement in pressures, lumen area changes, pulse wave velocity, and early systolic velocities, as well as qualitative agreement in late systolic flow structures. Our validated suite of FSI techniques offers a computationally efficient approach for numerical simulation of vascular hemodynamics. This study is among the first to validate a cardiovascular FSI formulation against an in vitro flow circuit involving a compliant vascular phantom of complex patient-specific anatomy.
我们之前介绍并验证了针对沃默斯利可变形壁理论的血管流固耦合(FSI)简化统一连续体公式。我们目前的工作旨在研究其在特定于患者的主动脉环境中的性能,其中理想化的几何形状和速度分布的假设是无效的。具体来说,我们利用二维磁共振成像(MRI)和四维流 MRI 从嵌入顺应性 3D 打印主动脉模型的体外流路中提取高分辨率的解剖和血液动力学信息。为了准确反映实验条件,我们在数值上实现了粘弹性外部组织支撑、血管组织预应力和倾斜边界条件,从而实现了每个入口和出口处的平面内血管运动。通过在压力、管腔面积变化、脉搏波速度和早期收缩速度方面进行紧密的定量一致性验证,以及在后期收缩流结构方面进行定性一致性验证,实现了我们公式的验证。我们验证的 FSI 技术套件为血管血液动力学的数值模拟提供了一种计算效率高的方法。这项研究是第一个针对涉及复杂患者特定解剖结构的顺应性血管模型的体外流路的心血管 FSI 公式进行验证的研究之一。