Suppr超能文献

验证简化统一连续体公式对体外 4D-Flow MRI 的适用性。

Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI.

机构信息

Department of Bioengineering, Stanford University, Clark Center E1.3 318 Campus Drive, Stanford, CA, 94305-5428, USA.

Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China.

出版信息

Ann Biomed Eng. 2023 Feb;51(2):377-393. doi: 10.1007/s10439-022-03038-4. Epub 2022 Aug 13.

Abstract

We previously introduced and verified the reduced unified continuum formulation for vascular fluid-structure interaction (FSI) against Womersley's deformable wall theory. Our present work seeks to investigate its performance in a patient-specific aortic setting in which assumptions of idealized geometries and velocity profiles are invalid. Specifically, we leveraged 2D magnetic resonance imaging (MRI) and 4D-flow MRI to extract high-resolution anatomical and hemodynamic information from an in vitro flow circuit embedding a compliant 3D-printed aortic phantom. To accurately reflect experimental conditions, we numerically implemented viscoelastic external tissue support, vascular tissue prestressing, and skew boundary conditions enabling in-plane vascular motion at each inlet and outlet. Validation of our formulation is achieved through close quantitative agreement in pressures, lumen area changes, pulse wave velocity, and early systolic velocities, as well as qualitative agreement in late systolic flow structures. Our validated suite of FSI techniques offers a computationally efficient approach for numerical simulation of vascular hemodynamics. This study is among the first to validate a cardiovascular FSI formulation against an in vitro flow circuit involving a compliant vascular phantom of complex patient-specific anatomy.

摘要

我们之前介绍并验证了针对沃默斯利可变形壁理论的血管流固耦合(FSI)简化统一连续体公式。我们目前的工作旨在研究其在特定于患者的主动脉环境中的性能,其中理想化的几何形状和速度分布的假设是无效的。具体来说,我们利用二维磁共振成像(MRI)和四维流 MRI 从嵌入顺应性 3D 打印主动脉模型的体外流路中提取高分辨率的解剖和血液动力学信息。为了准确反映实验条件,我们在数值上实现了粘弹性外部组织支撑、血管组织预应力和倾斜边界条件,从而实现了每个入口和出口处的平面内血管运动。通过在压力、管腔面积变化、脉搏波速度和早期收缩速度方面进行紧密的定量一致性验证,以及在后期收缩流结构方面进行定性一致性验证,实现了我们公式的验证。我们验证的 FSI 技术套件为血管血液动力学的数值模拟提供了一种计算效率高的方法。这项研究是第一个针对涉及复杂患者特定解剖结构的顺应性血管模型的体外流路的心血管 FSI 公式进行验证的研究之一。

相似文献

1
Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI.
Ann Biomed Eng. 2023 Feb;51(2):377-393. doi: 10.1007/s10439-022-03038-4. Epub 2022 Aug 13.
2
A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics.
J Biomech. 2021 Dec 2;129:110793. doi: 10.1016/j.jbiomech.2021.110793. Epub 2021 Oct 9.
3
Patient-specific compliant simulation framework informed by 4DMRI-extracted pulse wave Velocity: Application post-TEVAR.
J Biomech. 2024 Oct;175:112266. doi: 10.1016/j.jbiomech.2024.112266. Epub 2024 Aug 22.
5
Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
Cardiovasc Eng Technol. 2018 Dec;9(4):688-706. doi: 10.1007/s13239-018-00387-x. Epub 2018 Oct 24.
8
Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model.
Comput Biol Med. 2021 Aug;135:104581. doi: 10.1016/j.compbiomed.2021.104581. Epub 2021 Jun 18.
10
Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations.
J Biomech. 2019 Sep 20;94:13-21. doi: 10.1016/j.jbiomech.2019.07.004. Epub 2019 Jul 9.

引用本文的文献

1
4D flow MRI enhances prototype testing of a total artificial heart.
Sci Rep. 2025 Sep 15;15(1):32533. doi: 10.1038/s41598-025-18422-y.
2
A hybrid mock circulatory loop integrated with a LED-PIV system for the investigation of AAA compliant phantoms.
Front Bioeng Biotechnol. 2024 Oct 10;12:1452278. doi: 10.3389/fbioe.2024.1452278. eCollection 2024.
4
Validation of ultrasound velocimetry and computational fluid dynamics for flow assessment in femoral artery stenotic disease.
J Med Imaging (Bellingham). 2024 May;11(3):037001. doi: 10.1117/1.JMI.11.3.037001. Epub 2024 May 16.
5
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
7
A hemodynamic analysis of energy loss in abdominal aortic aneurysm using three-dimension idealized model.
Front Physiol. 2024 Jan 19;15:1330848. doi: 10.3389/fphys.2024.1330848. eCollection 2024.

本文引用的文献

1
Comparison of Immersed Boundary Simulations of Heart Valve Hemodynamics Against In Vitro 4D Flow MRI Data.
Ann Biomed Eng. 2023 Oct;51(10):2267-2288. doi: 10.1007/s10439-023-03266-2. Epub 2023 Jun 28.
2
Ultrasound-Based Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms Incorporating Pre-stress.
Front Physiol. 2021 Aug 13;12:717593. doi: 10.3389/fphys.2021.717593. eCollection 2021.
3
Experimental Validation of Enhanced Magnetic Resonance Imaging (EMRI) Using Particle Image Velocimetry (PIV).
Ann Biomed Eng. 2021 Dec;49(12):3481-3493. doi: 10.1007/s10439-021-02811-1. Epub 2021 Jun 28.
5
An energy-stable mixed formulation for isogeometric analysis of incompressible hyper-elastodynamics.
Int J Numer Methods Eng. 2019 Nov 23;120(8):937-963. doi: 10.1002/nme.6165. Epub 2019 Jul 5.
6
The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations.
Comput Methods Appl Mech Eng. 2020 Aug 1;367. doi: 10.1016/j.cma.2020.113122. Epub 2020 May 27.
8
Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms.
Cardiovasc Eng Technol. 2020 Feb;11(1):14-23. doi: 10.1007/s13239-019-00444-z. Epub 2019 Dec 9.
9
Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations.
J Biomech. 2019 Sep 20;94:13-21. doi: 10.1016/j.jbiomech.2019.07.004. Epub 2019 Jul 9.
10
A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
Comput Methods Appl Mech Eng. 2018 Aug;337:549-597. doi: 10.1016/j.cma.2018.03.045. Epub 2018 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验