Suppr超能文献

本地病例和输入性病例之间的继续传播风险的异质性影响了时变繁殖数的实际估计。

Heterogeneity in the onwards transmission risk between local and imported cases affects practical estimates of the time-dependent reproduction number.

机构信息

Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK.

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210308. doi: 10.1098/rsta.2021.0308. Epub 2022 Aug 15.

Abstract

During infectious disease outbreaks, inference of summary statistics characterizing transmission is essential for planning interventions. An important metric is the time-dependent reproduction number (), which represents the expected number of secondary cases generated by each infected individual over the course of their infectious period. The value of varies during an outbreak due to factors such as varying population immunity and changes to interventions, including those that affect individuals' contact networks. While it is possible to estimate a single population-wide , this may belie differences in transmission between subgroups within the population. Here, we explore the effects of this heterogeneity on estimates. Specifically, we consider two groups of infected hosts: those infected outside the local population (imported cases), and those infected locally (local cases). We use a Bayesian approach to estimate , made available for others to use via an online tool, that accounts for differences in the onwards transmission risk from individuals in these groups. Using COVID-19 data from different regions worldwide, we show that different assumptions about the relative transmission risk between imported and local cases affect estimates significantly, with implications for interventions. This highlights the need to collect data during outbreaks describing heterogeneities in transmission between different infected hosts, and to account for these heterogeneities in methods used to estimate . This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

摘要

在传染病爆发期间,推断描述传播特征的汇总统计数据对于规划干预措施至关重要。一个重要的指标是时变繁殖数 (),它表示每个感染个体在其感染期内产生的继发病例数的预期值。由于人群免疫力的变化和干预措施的变化(包括那些影响个体接触网络的措施)等因素,在疫情爆发期间 的值会发生变化。虽然可以估计一个单一的总体 ,但这可能掩盖了人群中不同亚组之间传播的差异。在这里,我们探讨了这种异质性对 估计的影响。具体来说,我们考虑了两组感染宿主:那些在当地人群之外感染的(输入病例),以及那些在当地感染的(本地病例)。我们使用贝叶斯方法来估计 ,并通过在线工具供他人使用,该方法考虑了来自这两个群体的个体的后续传播风险的差异。我们使用来自全球不同地区的 COVID-19 数据,表明对输入病例和本地病例之间相对传播风险的不同假设会显著影响 的估计值,从而对干预措施产生影响。这突显出在疫情爆发期间需要收集描述不同感染宿主之间传播异质性的数据,并在用于估计 的方法中考虑这些异质性。本文是“现实流行病建模的技术挑战和克服这些挑战的实例”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b71/9376709/91a9c2d767ec/rsta20210308f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验