Suppr超能文献

从英国冠状病毒病例数据推断繁殖数及其接近 1 的原因。

Fitting the reproduction number from UK coronavirus case data and why it is close to 1.

机构信息

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.

Department of Psychology, University of Cambridge,Cambridge CB2 3EB, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210301. doi: 10.1098/rsta.2021.0301. Epub 2022 Aug 15.

Abstract

We present a method for rapid calculation of coronavirus growth rates and [Formula: see text]-numbers tailored to publicly available UK data. We assume that the case data comprise a smooth, underlying trend which is differentiable, plus systematic errors and a non-differentiable noise term, and use bespoke data processing to remove systematic errors and noise. The approach is designed to prioritize up-to-date estimates. Our method is validated against published consensus [Formula: see text]-numbers from the UK government and is shown to produce comparable results two weeks earlier. The case-driven approach is combined with weight-shift-scale methods to monitor trends in the epidemic and for medium-term predictions. Using case-fatality ratios, we create a narrative for trends in the UK epidemic: increased infectiousness of the B1.117 (Alpha) variant, and the effectiveness of vaccination in reducing severity of infection. For longer-term future scenarios, we base future [Formula: see text] on insight from localized spread models, which show [Formula: see text] going asymptotically to 1 after a transient, regardless of how large the [Formula: see text] transient is. This accords with short-lived peaks observed in case data. These cannot be explained by a well-mixed model and are suggestive of spread on a localized network. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

摘要

我们提出了一种针对英国公开数据的快速计算冠状病毒增长率和基本再生数的方法。我们假设病例数据包含一个可微分的平滑基础趋势,加上系统误差和不可微分的噪声项,并使用定制的数据处理方法来消除系统误差和噪声。该方法旨在优先提供最新的估计值。我们的方法通过与英国政府发布的共识基本再生数进行验证,结果表明该方法可以提前两周得到可比的结果。病例驱动的方法与加权比例法相结合,用于监测疫情趋势和进行中期预测。使用病死率,我们为英国疫情趋势创建了一个叙述:B1.117(阿尔法)变异的传染性增加,以及疫苗接种在降低感染严重程度方面的有效性。对于未来的长期情景,我们根据局部传播模型的见解来预测未来的基本再生数,该模型表明基本再生数在经过短暂的过渡后,无论过渡有多大,都会渐近地趋近于 1。这与病例数据中观察到的短暂峰值相符。这些不能用混合良好的模型来解释,而是表明在局部网络上的传播。本文是“现实生活中的传染病建模的技术挑战及克服这些挑战的实例”专题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3a0/9376721/e18e294df20a/rsta20210301f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验