School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK.
Department of Psychology, University of Cambridge,Cambridge CB2 3EB, UK.
Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210301. doi: 10.1098/rsta.2021.0301. Epub 2022 Aug 15.
We present a method for rapid calculation of coronavirus growth rates and [Formula: see text]-numbers tailored to publicly available UK data. We assume that the case data comprise a smooth, underlying trend which is differentiable, plus systematic errors and a non-differentiable noise term, and use bespoke data processing to remove systematic errors and noise. The approach is designed to prioritize up-to-date estimates. Our method is validated against published consensus [Formula: see text]-numbers from the UK government and is shown to produce comparable results two weeks earlier. The case-driven approach is combined with weight-shift-scale methods to monitor trends in the epidemic and for medium-term predictions. Using case-fatality ratios, we create a narrative for trends in the UK epidemic: increased infectiousness of the B1.117 (Alpha) variant, and the effectiveness of vaccination in reducing severity of infection. For longer-term future scenarios, we base future [Formula: see text] on insight from localized spread models, which show [Formula: see text] going asymptotically to 1 after a transient, regardless of how large the [Formula: see text] transient is. This accords with short-lived peaks observed in case data. These cannot be explained by a well-mixed model and are suggestive of spread on a localized network. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
我们提出了一种针对英国公开数据的快速计算冠状病毒增长率和基本再生数的方法。我们假设病例数据包含一个可微分的平滑基础趋势,加上系统误差和不可微分的噪声项,并使用定制的数据处理方法来消除系统误差和噪声。该方法旨在优先提供最新的估计值。我们的方法通过与英国政府发布的共识基本再生数进行验证,结果表明该方法可以提前两周得到可比的结果。病例驱动的方法与加权比例法相结合,用于监测疫情趋势和进行中期预测。使用病死率,我们为英国疫情趋势创建了一个叙述:B1.117(阿尔法)变异的传染性增加,以及疫苗接种在降低感染严重程度方面的有效性。对于未来的长期情景,我们根据局部传播模型的见解来预测未来的基本再生数,该模型表明基本再生数在经过短暂的过渡后,无论过渡有多大,都会渐近地趋近于 1。这与病例数据中观察到的短暂峰值相符。这些不能用混合良好的模型来解释,而是表明在局部网络上的传播。本文是“现实生活中的传染病建模的技术挑战及克服这些挑战的实例”专题的一部分。