Suppr超能文献

基于肌内脂肪组织含量的列线图预测胆囊癌根治性切除术后患者的预后

Nomogram based on intramuscular adipose tissue content for predicting the prognosis of patients with gallbladder cancer after radical resection.

作者信息

Zheng Chongming, Chen Xiaotian, Zhang Zhewei, Li Anlvna, Wang Junwei, Cai Tingting, Tang Yanping, An Xuewen, Lu Fei, Chen Gang, Xiang Youqun

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Wenzhou Medical University, Wenzhou, China.

出版信息

Transl Cancer Res. 2022 Jul;11(7):1898-1908. doi: 10.21037/tcr-22-123.

Abstract

BACKGROUND

To investigate the predictive value of intramuscular adipose tissue content (IMAC) on the outcome of gallbladder cancer (GBC) patients after resection, by then develop and evaluate a nomogram to predict the prognosis of GBC patients.

METHODS

This research incorporated 123 patients with a pathological diagnosis of GBC. Evaluating the prognosis by the Kaplan-Meier method. Independent predictors of overall survival (OS) were screened using multifactorial Cox regression analysis, and a nomogram was constructed from these. Consistency index and calibration curve were used to identify and calibrate the nomogram. The accuracy of the nomogram was assessed by receiver operating characteristic (ROC) curve and decision curve analysis (DCA) was used to assess the net benefit.

RESULTS

Patients with high IMAC showed a worse prognosis. A nomogram was constructed to predict OS based on IMAC. The C-index for the nomogram was 0.804. The calibration curve showed well performance of the nomogram. The area under the ROC curve (AUC) for the nomogram at three and five years was 0.839 and 0.785, respectively. A high net benefit was demonstrated by DCA.

CONCLUSIONS

IMAC was a valid predictor for GBC patients. A nomogram with good performance is constructed to predict the prognosis of GBC patients.

摘要

背景

探讨肌肉内脂肪组织含量(IMAC)对胆囊癌(GBC)患者切除术后预后的预测价值,并开发和评估一种预测GBC患者预后的列线图。

方法

本研究纳入123例经病理诊断为GBC的患者。采用Kaplan-Meier法评估预后。使用多因素Cox回归分析筛选总生存(OS)的独立预测因素,并据此构建列线图。使用一致性指数和校准曲线来识别和校准列线图。通过受试者工作特征(ROC)曲线评估列线图的准确性,并使用决策曲线分析(DCA)评估净效益。

结果

IMAC高的患者预后较差。构建了基于IMAC预测OS的列线图。该列线图的C指数为0.804。校准曲线显示列线图性能良好。列线图在3年和5年时的ROC曲线下面积(AUC)分别为0.839和0.785。DCA显示出较高的净效益。

结论

IMAC是GBC患者的有效预测指标。构建了性能良好的列线图来预测GBC患者的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验