文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞层:在无监督单细胞转录组分析中揭示聚类结构

Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis.

作者信息

Blair Andrew P, Hu Robert K, Farah Elie N, Chi Neil C, Pollard Katherine S, Przytycki Pawel F, Kathiriya Irfan S, Bruneau Benoit G

机构信息

Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA 94143, USA.

Division of Cardiology, Department of Medicine, University of California, San Diego, CA 92093, USA.

出版信息

Bioinform Adv. 2022 Aug 4;2(1):vbac051. doi: 10.1093/bioadv/vbac051. eCollection 2022.


DOI:10.1093/bioadv/vbac051
PMID:35967929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9362878/
Abstract

MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter but then only report one. RESULTS: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation of gene expression, co-expression, biological processes and cluster integrity across clustering resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking molecular data and cluster evaluation metrics, providing novel insight into cell populations. AVAILABILITY AND IMPLEMENTATION: https://github.com/apblair/CellLayers.

摘要

动机:单细胞转录组学的无监督聚类是识别细胞群体的强大方法。单细胞聚类的静态可视化技术仅显示单个分辨率参数的结果。分析人员通常会评估多个分辨率参数,但随后只报告一个。 结果:我们开发了Cell Layers,这是一种交互式桑基工具,用于定量研究跨聚类分辨率的基因表达、共表达、生物学过程和聚类完整性。Cell Layers通过链接分子数据和聚类评估指标,增强了单细胞聚类的可解释性,为细胞群体提供了新的见解。 可用性和实现方式:https://github.com/apblair/CellLayers 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a559/9710599/80d8fcbc41dc/vbac051f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a559/9710599/80d8fcbc41dc/vbac051f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a559/9710599/80d8fcbc41dc/vbac051f1.jpg

相似文献

[1]
Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis.

Bioinform Adv. 2022-8-4

[2]
ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes.

Bioinformatics. 2022-9-15

[3]
Phitest for analyzing the homogeneity of single-cell populations.

Bioinformatics. 2022-4-28

[4]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[5]
Evaluating single-cell cluster stability using the Jaccard similarity index.

Bioinformatics. 2021-8-9

[6]
scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.

Comput Struct Biotechnol J. 2022-4-27

[7]
scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.

Bioinformatics. 2022-4-12

[8]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[9]
Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.

Brief Bioinform. 2021-7-20

[10]
GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.

Bioinformatics. 2022-5-26

引用本文的文献

[1]
Cancer stem cells and tumor-associated macrophages as mates in tumor progression: mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction.

Front Immunol. 2025-2-6

本文引用的文献

[1]
CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication.

Nucleic Acids Res. 2021-9-7

[2]
Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease.

Dev Cell. 2021-2-8

[3]
Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning.

Interdiscip Sci. 2020-6

[4]
Biological process activity transformation of single cell gene expression for cross-species alignment.

Nat Commun. 2019-10-25

[5]
From Louvain to Leiden: guaranteeing well-connected communities.

Sci Rep. 2019-3-26

[6]
Single-cell RNA sequencing technologies and bioinformatics pipelines.

Exp Mol Med. 2018-8-7

[7]
Clustering trees: a visualization for evaluating clusterings at multiple resolutions.

Gigascience. 2018-7-1

[8]
BioSankey: Visualization of Microbial Communities Over Time.

J Integr Bioinform. 2018-6-13

[9]
Quantitative assessment of protein activity in orphan tissues and single cells using the metaVIPER algorithm.

Nat Commun. 2018-4-16

[10]
Resolution limit in community detection.

Proc Natl Acad Sci U S A. 2007-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索