Su Ziyu, Rezapour Mostafa, Sajjad Usama, Niu Shuo, Gurcan Metin Nafi, Niazi Muhammad Khalid Khan
IEEE J Biomed Health Inform. 2024 Dec;28(12):7206-7216. doi: 10.1109/JBHI.2024.3439499. Epub 2024 Dec 5.
Although multiple instance learning (MIL) methods are widely used for automatic tumor detection on whole slide images (WSI), they suffer from the extreme class imbalance WSIs containing small tumors where the tumor may include only a few isolated cells. For early detection, it is important that MIL algorithms can identify small tumors. Existing studies have attempted to address this issue using attention-based architectures and instance selection-based methodologies but have not produced significant improvements. This paper proposes cross-attention-based salient instance inference MIL (CASiiMIL), which involves a novel saliency-informed attention mechanism to identify small tumors (e.g., breast cancer lymph node micro-metastasis) on WSIs without needing any annotations. In addition to this new attention mechanism, we introduce a negative representation learning algorithm to facilitate the learning of saliency-informed attention weights for improved sensitivity on tumor WSIs. The proposed model outperforms the state-of-the-art MIL methods on two popular tumor metastasis detection datasets. The proposed approach demonstrates great cross-center generalizability, high accuracy in classifying WSIs with small tumor lesions, and excellent interpretability attributed to the saliency-informed attention weights. We expect that the proposed method will pave the way for training algorithms for early tumor detection on large datasets where acquiring fine-grained annotations is is not practical.
尽管多实例学习(MIL)方法被广泛用于在全切片图像(WSI)上进行自动肿瘤检测,但它们面临着极端的类别不平衡问题,即WSI中包含小肿瘤,其中肿瘤可能仅由少数孤立细胞组成。对于早期检测而言,MIL算法能够识别小肿瘤非常重要。现有研究试图使用基于注意力的架构和基于实例选择的方法来解决这个问题,但并未取得显著改进。本文提出了基于交叉注意力的显著实例推理MIL(CASiiMIL),它涉及一种新颖的显著信息注意力机制,无需任何注释即可识别WSI上的小肿瘤(例如乳腺癌淋巴结微转移)。除了这种新的注意力机制外,我们还引入了一种负表示学习算法,以促进对显著信息注意力权重的学习,从而提高对肿瘤WSI的敏感性。所提出的模型在两个流行的肿瘤转移检测数据集上优于当前最先进的MIL方法。所提出的方法展示了出色的跨中心通用性、对具有小肿瘤病变的WSI进行分类的高精度,以及由于显著信息注意力权重而具有的出色可解释性。我们期望所提出的方法将为在获取细粒度注释不切实际的大型数据集上训练早期肿瘤检测算法铺平道路。