Hedrich Carina, James Nithin T, Maragno Laura G, de Lima Valéria, González Sergio Yesid Gómez, Blick Robert H, Zierold Robert, Furlan Kaline P
Center for Hybrid Nanostructures, Universität Hamburg, 22761 Hamburg, Germany.
Hamburg University of Technology (TUHH), Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):46964-46974. doi: 10.1021/acsami.4c10831. Epub 2024 Sep 3.
The use of solar energy for photocatalysis holds great potential for sustainable pollution reduction. Titanium dioxide (TiO) is a benchmark material, effective under ultraviolet light but limited in visible light utilization, restricting its application in solar-driven photocatalysis. Previous studies have shown that semiconductor heterojunctions and nanostructuring can broaden the TiO's photocatalytic spectral range. Semiconductor heterojunctions are interfaces formed between two different semiconductor materials that can be engineered. Especially, type II heterojunctions facilitate charge separation, and they can be obtained by combining TiO with, for example, iron(III) oxide (FeO). Nanostructuring in the form of 3D inverse opals (IOs) demonstrated increased TiO light absorption efficiency of the material, by tailoring light-matter interactions through their photonic crystal structure and specifically their photonic stopband, which can give rise to a slow photon effect. Such effect is hypothesized to enhance the generation of free charges. This work focuses on the above-described effects simultaneously, through the synthesis of TiO-FeO IOs via multilayer atomic layer deposition (ALD) and the characterization of their photocatalytic activities. Our results reveal that the complete functionalization of TiO IOs with FeO increases the photocatalytic activity through the slow photon effect and semiconductor heterojunction formation. We systematically explore the influence of FeO thickness on photocatalytic performance, and a maximum photocatalytic rate constant of 1.38 ± 0.09 h is observed for a 252 nm template TiO-FeO bilayer IO consisting of 16 nm TiO and 2 nm FeO. Further tailoring the performance by overcoating with additional TiO layers enhances photoinduced crystallization and tunes photocatalytic properties. These findings highlight the potential of TiO-FeO IOs for efficient water pollutant removal and the importance of precise nanostructuring and heterojunction engineering in advancing photocatalytic technologies.
利用太阳能进行光催化在可持续减少污染方面具有巨大潜力。二氧化钛(TiO₂)是一种基准材料,在紫外光下有效,但在可见光利用方面有限,这限制了其在太阳能驱动光催化中的应用。先前的研究表明,半导体异质结和纳米结构化可以拓宽TiO₂的光催化光谱范围。半导体异质结是在两种不同的可设计半导体材料之间形成的界面。特别是,II型异质结有助于电荷分离,可以通过将TiO₂与例如氧化铁(Fe₂O₃)结合来获得。以三维反蛋白石(IOs)形式的纳米结构化通过其光子晶体结构,特别是其光子禁带调整光与物质的相互作用,证明提高了材料对TiO₂光的吸收效率,这可以产生慢光子效应。据推测,这种效应会增强自由电荷的产生。这项工作通过多层原子层沉积(ALD)合成TiO₂-Fe₂O₃ IOs并表征其光催化活性,同时关注上述效应。我们的结果表明,用Fe₂O₃对TiO₂ IOs进行完全功能化通过慢光子效应和半导体异质结的形成提高了光催化活性。我们系统地探索了Fe₂O₃厚度对光催化性能的影响,对于由16 nm TiO₂和2 nm Fe₂O₃组成的252 nm模板TiO₂-Fe₂O₃双层IO,观察到最大光催化速率常数为1.38±0.09 h⁻¹。通过用额外的TiO₂层进行包覆进一步调整性能可增强光诱导结晶并调节光催化性能。这些发现突出了TiO₂-Fe₂O₃ IOs在高效去除水中污染物方面的潜力,以及精确的纳米结构化和异质结工程在推进光催化技术中的重要性。