School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Department of Physics, Durham University, Durham DH1 3LE, United Kingdom.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206096119. doi: 10.1073/pnas.2206096119. Epub 2022 Aug 15.
We study a synthetic system of motile bacteria encapsulated inside giant lipid vesicles. Forces exerted by the bacteria on the inner side of the membrane are sufficient to extrude membrane tubes filled with one or several bacteria. We show that a physical coupling between the membrane tube and the flagella of the enclosed cells transforms the tube into an effective helical flagellum propelling the vesicle. We develop a simple theoretical model to estimate the propulsive force from the speed of the vesicles and demonstrate the good efficiency of this coupling mechanism. Together, these results point to design principles for conferring motility to synthetic cells.
我们研究了一种在巨大脂质泡内封装的运动细菌的合成系统。细菌对膜内侧施加的力足以将充满一个或多个细菌的膜管挤出。我们表明,膜管与封闭细胞的鞭毛之间的物理耦合将管转化为有效的螺旋鞭毛,从而推动泡囊。我们开发了一个简单的理论模型来估计从泡囊速度获得的推进力,并证明了这种耦合机制的高效率。这些结果共同为赋予合成细胞运动能力提供了设计原则。