Suppr超能文献

人工智能在糖尿病性黄斑水肿的筛查、诊断和分类中的应用:系统评价。

Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review.

机构信息

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Surv Ophthalmol. 2023 Jan-Feb;68(1):42-53. doi: 10.1016/j.survophthal.2022.08.004. Epub 2022 Aug 12.

Abstract

We review the application of artificial intelligence (AI) techniques in the screening, diagnosis, and classification of diabetic macular edema (DME) by searching six databases- PubMed, Scopus, Web of Science, Science Direct, IEEE, and ACM- from January 1, 2005 to July 4, 2021. A total of 879 articles were extracted, and by applying inclusion and exclusion criteria, 38 articles were selected for more evaluation. The methodological quality of included studies was evaluated using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS-2). We provide an overview of the current state of various AI techniques for DME screening, diagnosis, and classification using retinal imaging modalities such as optical coherence tomography (OCT) and color fundus photography (CFP). Based on our findings, deep learning models have an extraordinary capacity to provide an accurate and efficient system for DME screening and diagnosis. Using these in the processing of modalities leads to a significant increase in sensitivity and specificity values. The use of decision support systems and applications based on AI in processing retinal images provided by OCT and CFP increases the sensitivity and specificity in DME screening and detection.

摘要

我们通过检索 PubMed、Scopus、Web of Science、Science Direct、IEEE 和 ACM 六个数据库,从 2005 年 1 月 1 日至 2021 年 7 月 4 日,回顾了人工智能 (AI) 技术在糖尿病性黄斑水肿 (DME) 的筛查、诊断和分类中的应用。共提取了 879 篇文章,通过应用纳入和排除标准,选择了 38 篇文章进行进一步评估。使用诊断准确性研究的质量评估工具 (QUADAS-2) 评估纳入研究的方法学质量。我们概述了目前基于视网膜成像模式(如光学相干断层扫描 (OCT) 和眼底彩色摄影 (CFP))的各种 AI 技术在 DME 筛查、诊断和分类中的应用。根据我们的研究结果,深度学习模型具有提供准确高效的 DME 筛查和诊断系统的非凡能力。在处理这些模式时使用这些模型可显著提高敏感性和特异性值。在 OCT 和 CFP 提供的视网膜图像处理中使用基于 AI 的决策支持系统和应用程序可提高 DME 筛查和检测的敏感性和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验