Suppr超能文献

一种新型的甲酰胺酶是侵袭性细菌生物合成核黄素所必需的。

A novel formamidase is required for riboflavin biosynthesis in invasive bacteria.

机构信息

Grain Legume Genetics and Physiology Research Unit, USDA, ARS, Prosser, Washington, USA.

Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.

出版信息

J Biol Chem. 2022 Sep;298(9):102377. doi: 10.1016/j.jbc.2022.102377. Epub 2022 Aug 13.

Abstract

Biosynthesis of riboflavin (RF), the precursor of the redox cofactors FMN and FAD, was thought to be well understood in bacteria, with all the pathway enzymes presumed to be known and essential. Our previous research has challenged this view by showing that, in the bacterium Sinorhizobium meliloti, deletion of the ribBA gene encoding the enzyme that catalyzes the initial steps on the RF biosynthesis pathway only causes a reduction in flavin secretion rather than RF auxotrophy. This finding led us to hypothesize that RibBA participates in the biosynthesis of flavins destined for secretion, whereas S. meliloti has another enzyme that performs this function for internal cellular metabolism. Here, we identify and biochemically characterize a novel formamidase (SMc02977) involved in the production of RF for intracellular functions in S. meliloti. This catalyst, which we named Sm-BrbF, releases formate from the early RF precursor 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate to yield 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate. We show that homologs of this enzyme are present in many bacteria, are highly abundant in the Rhizobiales order, and that sequence homologs from Brucella abortus and Liberobacter solanacearum complement the RF auxotrophy of the Sm1021ΔSMc02977 mutant. Furthermore, we show that the B. abortus enzyme (Bab2_0247, Ba-BrbF) is also an 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate formamidase, and that the bab2_0247 mutant is a RF auxotroph exhibiting a lower level of intracellular infection than the wildtype strain. Finally, we show that Sm-BrbF and Ba-BrbF directly interact with other RF biosynthesis pathway enzymes. Together, our results provide novel insight into the intricacies of RF biosynthesis in bacteria.

摘要

核黄素(RF)是 FMN 和 FAD 等氧化还原辅因子的前体,人们原本认为其生物合成在细菌中已得到充分理解,所有的途径酶都被认为是已知且必需的。我们之前的研究通过表明,在细菌根瘤菌属苜蓿中华根瘤菌中,缺失编码催化 RF 生物合成途径初始步骤的酶的 ribBA 基因只会导致黄素分泌减少,而不是 RF 营养缺陷。这一发现使我们假设 RibBA 参与了用于分泌的黄素生物合成,而根瘤菌属苜蓿中华根瘤菌有另一种酶来执行这一功能,用于细胞内新陈代谢。在这里,我们鉴定并生化表征了一种新型的(formamidase) (SMc02977),它参与了根瘤菌属苜蓿中华根瘤菌细胞内功能的 RF 生成。这种催化剂,我们命名为 Sm-BrbF,从早期 RF 前体 2-氨基-5-甲酰氨基-6-核糖氨基-4(3H)-嘧啶酮 5'-磷酸中释放甲酸盐,生成 2,5-二氨基-6-核糖氨基-4(3H)-嘧啶酮 5'-磷酸。我们表明,这种酶的同源物存在于许多细菌中,在根瘤菌目中高度丰富,来自布鲁氏菌和韧皮部杆菌的序列同源物补充了 Sm1021ΔSMc02977 突变体的 RF 营养缺陷。此外,我们表明布鲁氏菌的酶(Bab2_0247,Ba-BrbF)也是一种 2-氨基-5-甲酰氨基-6-核糖氨基-4(3H)-嘧啶酮 5'-磷酸甲酰胺酶,而 bab2_0247 突变体是 RF 营养缺陷体,其细胞内感染水平低于野生型菌株。最后,我们表明 Sm-BrbF 和 Ba-BrbF 直接与其他 RF 生物合成途径酶相互作用。总之,我们的研究结果为细菌中 RF 生物合成的复杂性提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ca/9478397/f2af252a5555/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验