Suppr超能文献

急诊医学(EM)模拟病例的未来:一项改进的大规模在线需求评估。

The Future of Emergency Medicine (EM) Sim Cases: A Modified Massive Online Needs Assessment.

作者信息

Dinh Anson, Chan Teresa M, Caners Kyla, Hall Andrew K, Petrosoniak Andrew, Chaplin Tim, Heyd Christopher, Baylis Jared B

机构信息

College of Medicine, University of Saskatchewan, Saskatoon, CAN.

Emergency Medicine, McMaster University, Hamilton, CAN.

出版信息

Cureus. 2022 Jul 12;14(7):e26799. doi: 10.7759/cureus.26799. eCollection 2022 Jul.

Abstract

Objective Emergency Medicine (EM) Sim Cases was initially developed in 2015 as a free open-access simulation resource. To ensure the future of EM Sim Cases remains relevant and up to date, we performed a needs assessment to better define our audience and facilitate long-term goals. Methods We delivered a survey using a modified massive-online-needs-assessment methodology through an iterative process with simulation experts from the EM Simulation Educators Research Collaborative. We distributed the survey via email and Twitter and analyzed the data using descriptive statistics and thematic analysis. Results We obtained 106 responses. EM Sim Cases is commonly used by physicians primarily as an educational resource for postgraduate level trainees. Perceived needs included resuscitation, pediatrics, trauma, and toxicology content. Prompted needs included non-simulation-case educational resources, increased case database, and improved website organization. Conclusions Data collected from our needs assessment has defined our audience allowing us to design our long-term goals and strategies.

摘要

目的 急诊医学(EM)模拟病例最初于2015年开发,是一种免费的开放获取模拟资源。为确保EM模拟病例的未来仍然相关且与时俱进,我们进行了需求评估,以更好地界定我们的受众并推动长期目标的实现。方法 我们采用经过改进的大规模在线需求评估方法,通过与急诊医学模拟教育者研究协作组的模拟专家进行迭代过程来开展一项调查。我们通过电子邮件和推特分发调查问卷,并使用描述性统计和主题分析对数据进行分析。结果 我们获得了106份回复。EM模拟病例主要被医生用作研究生水平学员的教育资源。感知到的需求包括复苏、儿科、创伤和毒理学内容。引发的需求包括非模拟病例教育资源、增加病例数据库以及改进网站组织。结论 从我们的需求评估中收集的数据界定了我们的受众,使我们能够设计长期目标和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df86/9372375/aee8e24e30db/cureus-0014-00000026799-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验