Ghareeb Waleed M, Draz Eman, Madbouly Khaled, Hussein Ahmed H, Faisal Mohammed, Elkashef Wagdi, Emile Mona Hany, Edelhamre Marcus, Kim Seon Hahn, Emile Sameh Hany
From the Gastrointestinal Surgery Unit (Ghareeb, Hussein), Faculty of Medicine, Suez Canal University Hospitals, Ismaila, Egypt.
Laboratory of Applied Artificial Intelligence in Medical Disciplines (Ghareeb, Draz, Hussein), Faculty of Medicine, Suez Canal University Hospitals, Ismaila, Egypt.
J Am Coll Surg. 2022 Sep 1;235(3):482-493. doi: 10.1097/XCS.0000000000000277. Epub 2022 Aug 10.
KRAS mutation can alter the treatment plan after resection of colorectal cancer. Despite its importance, the KRAS status of several patients remains unchecked because of the high cost and limited resources. This study developed a deep neural network (DNN) to predict the KRAS genotype using hematoxylin and eosin (H&E)-stained histopathological images.
Three DNNs were created (KRAS_Mob, KRAS_Shuff, and KRAS_Ince) using the structural backbone of the MobileNet, ShuffleNet, and Inception networks, respectively. The Cancer Genome Atlas was screened to extract 49,684 image tiles that were used for deep learning and internal validation. An independent cohort of 43,032 image tiles was used for external validation. The performance was compared with humans, and a virtual cost-saving analysis was done.
The KRAS_Mob network (area under the receiver operating curve [AUC] 0.8, 95% CI 0.71 to 0.89) was the best-performing model for predicting the KRAS genotype, followed by the KRAS_Shuff (AUC 0.73, 95% CI 0.62 to 0.84) and KRAS_Ince (AUC 0.71, 95% CI 0.6 to 0.82) networks. Combing the KRAS_Mob and KRAS_Shuff networks as a double prediction approach showed improved performance. KRAS_Mob network accuracy surpassed that of two independent pathologists (AUC 0.79 [95% CI 0.64 to 0.93], 0.51 [95% CI 0.34 to 0.69], and 0.51 (95% CI 0.34 to 0.69]; p < 0.001 for all comparisons).
The DNN has the potential to predict the KRAS genotype directly from H&E-stained histopathological slide images. As an algorithmic screening method to prioritize patients for laboratory confirmation, such a model might possibly reduce the number of patients screened, resulting in significant test-related time and economic savings.
KRAS 突变可改变结直肠癌切除术后的治疗方案。尽管其很重要,但由于成本高且资源有限,部分患者的 KRAS 状态仍未得到检测。本研究开发了一种深度神经网络(DNN),用于利用苏木精和伊红(H&E)染色的组织病理学图像预测 KRAS 基因型。
分别使用 MobileNet、ShuffleNet 和 Inception 网络的结构主干创建了三个 DNN(KRAS_Mob、KRAS_Shuff 和 KRAS_Ince)。对癌症基因组图谱进行筛选,以提取 49,684 个图像块,用于深度学习和内部验证。一个包含 43,032 个图像块的独立队列用于外部验证。将性能与人类进行比较,并进行了虚拟成本节约分析。
KRAS_Mob 网络(受试者操作特征曲线下面积 [AUC] 为 0.8,95% 置信区间为 0.71 至 0.89)是预测 KRAS 基因型性能最佳的模型,其次是 KRAS_Shuff 网络(AUC 为 0.73,95% 置信区间为 0.62 至 0.84)和 KRAS_Ince 网络(AUC 为 0.71,95% 置信区间为 0.6 至 0.82)。将 KRAS_Mob 和 KRAS_Shuff 网络作为双重预测方法相结合,性能有所提高。KRAS_Mob 网络的准确率超过了两名独立病理学家(AUC 分别为 0.79 [95% 置信区间为 0.64 至 0.93]、0.51 [95% 置信区间为 0.34 至 0.69] 和 0.51(95% 置信区间为 0.34 至 0.69];所有比较的 p < 0.001)。
DNN 有潜力直接从 H&E 染色的组织病理学幻灯片图像中预测 KRAS 基因型。作为一种算法筛选方法,用于对患者进行实验室确认的优先级排序,这样的模型可能会减少筛查的患者数量,从而显著节省与检测相关的时间和经济成本。