Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
J Chem Inf Model. 2022 Sep 12;62(17):4095-4106. doi: 10.1021/acs.jcim.2c00601. Epub 2022 Aug 16.
Herein, we introduce a new strategy to estimate binding free energies using end-state molecular dynamics simulation trajectories. The method is adopted from linear interaction energy (LIE) and ANI-2x neural network potentials (machine learning) for the atomic simulation environment (ASE). It predicts the single-point interaction energies between ligand-protein and ligand-solvent pairs at the accuracy of the wb97x/6-31G* level for the conformational space that is sampled by molecular dynamics (MD) simulations. Our results on 54 protein-ligand complexes show that the method can be accurate and have a correlation of = 0.87-0.88 to the experimental binding free energies, outperforming current end-state methods with reduced computational cost. The method also allows us to compare BFEs of ligands with different scaffolds. The code is available free of charge (documentation and test files) at https://github.com/otayfuroglu/deepQM.
在此,我们介绍了一种新的策略,通过末端态分子动力学模拟轨迹来估计结合自由能。该方法源自原子模拟环境 (ASE) 中的线性相互作用能 (LIE) 和 ANI-2x 神经网络势 (机器学习)。它预测了配体-蛋白质和配体-溶剂对之间的单点相互作用能,其准确性与 wb97x/6-31G* 水平相当,适用于分子动力学 (MD) 模拟采样的构象空间。我们对 54 个蛋白-配体复合物的研究结果表明,该方法可以达到较高的准确性,与实验结合自由能的相关系数为 = 0.87-0.88,优于具有降低计算成本的当前末端态方法。该方法还允许我们比较不同骨架配体的 BFEs。该代码可在 https://github.com/otayfuroglu/deepQM 上免费获得(文档和测试文件)。