Lang Shuangyan, Yu Seung-Ho, Feng Xinran, Krumov Mihail R, Abruña Héctor D
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
Nat Commun. 2022 Aug 16;13(1):4811. doi: 10.1038/s41467-022-32139-w.
The complex interplay and only partial understanding of the multi-step phase transitions and reaction kinetics of redox processes in lithium-sulfur batteries are the main stumbling blocks that hinder the advancement and broad deployment of this electrochemical energy storage system. To better understand these aspects, here we report operando confocal Raman microscopy measurements to investigate the reaction kinetics of Li-S redox processes and provide mechanistic insights into polysulfide generation/evolution and sulfur deposition. Operando visualization and quantification of the reactants and intermediates enabled the characterization of potential-dependent rates during Li-S redox and the linking of the electronic conductivity of the sulfur-based electrode and concentrations of polysulfides to the cell performance. We also report the visualization of the interfacial evolution and diffusion processes of different polysulfides that demonstrate stepwise discharge and parallel recharge mechanisms during cell operation. These results provide fundamental insights into the mechanisms and kinetics of Li-S redox reactions.
锂硫电池中氧化还原过程的多步相变和反应动力学之间复杂的相互作用以及仅有的部分理解,是阻碍这种电化学储能系统发展和广泛应用的主要绊脚石。为了更好地理解这些方面,我们在此报告了原位共聚焦拉曼显微镜测量,以研究锂硫氧化还原过程的反应动力学,并提供关于多硫化物生成/演化和硫沉积的机理见解。对反应物和中间体的原位可视化和定量分析,使得能够表征锂硫氧化还原过程中电位依赖的速率,并将硫基电极的电子电导率和多硫化物浓度与电池性能联系起来。我们还报告了不同多硫化物的界面演化和扩散过程的可视化,这些过程展示了电池运行期间的逐步放电和平行充电机制。这些结果为锂硫氧化还原反应的机理和动力学提供了基本见解。