Houston Methodist Debakey Heart & Vascular Center, 6550 Fannin Street, Houston, TX, 77030, USA.
University of Kentucky, Lexington, KY, USA.
Sci Rep. 2022 Aug 16;12(1):13861. doi: 10.1038/s41598-022-17875-9.
Coronary computed tomography angiography (CCTA) derived machine learning fractional flow reserve (ML-FFR) can assess the hemodynamic significance of coronary artery stenoses. We aimed to assess sex differences in the association of ML-FFR and incident cardiovascular outcomes. We studied a retrospective cohort of consecutive patients who underwent clinically indicated CCTA and single photon emission computed tomography (SPECT). Obstructive stenosis was defined as ≥ 70% stenosis severity in non-left main vessels or ≥ 50% in the left main coronary. ML-FFR was computed using a machine learning algorithm with significant stenosis defined as ML-FFR < 0.8. The primary outcome was a composite of death or non-fatal myocardial infarction (D/MI). Our study population consisted of 471 patients with mean (SD) age 65 (13) years, 53% men, and multiple comorbidities (78% hypertension, 66% diabetes, 81% dyslipidemia). Compared to men, women were less likely to have obstructive stenosis by CCTA (9% vs. 18%; p = 0.006), less multivessel CAD (4% vs. 6%; p = 0.25), lower prevalence of ML-FFR < 0.8 (39% vs. 44%; p = 0.23) and higher median (IQR) ML-FFR (0.76 (0.53-0.86) vs. 0.71 (0.47-0.84); p = 0.047). In multivariable adjusted models, there was no significant association between ML-FFR < 0.8 and D/MI [Hazard Ratio 0.82, 95% confidence interval (0.30, 2.20); p = 0.25 for interaction with sex.]. In a high-risk cohort of symptomatic patients who underwent CCTA and SPECT testing, ML-FFR was higher in women than men. There was no significant association between ML-FFR and incident mortality or MI and no evidence that the prognostic value of ML-FFR differs by sex.
冠状动脉计算机断层扫描血管造影术(CCTA)衍生的机器学习血流储备分数(ML-FFR)可评估冠状动脉狭窄的血流动力学意义。我们旨在评估 ML-FFR 与心血管事件发生之间的性别差异。我们研究了一组连续接受临床指征性 CCTA 和单光子发射计算机断层扫描(SPECT)检查的回顾性队列。梗阻性狭窄定义为非左主干血管中≥70%的狭窄严重程度或左主干冠状动脉中≥50%的狭窄严重程度。使用机器学习算法计算 ML-FFR,显著狭窄定义为 ML-FFR<0.8。主要结局是死亡或非致死性心肌梗死(D/MI)的复合结局。我们的研究人群包括 471 名平均(标准差)年龄为 65(13)岁的患者,其中 53%为男性,且患有多种合并症(78%高血压,66%糖尿病,81%血脂异常)。与男性相比,女性通过 CCTA 检查发现梗阻性狭窄的可能性较低(9%比 18%;p=0.006),多支血管 CAD 的发生率较低(4%比 6%;p=0.25),ML-FFR<0.8 的患病率较低(39%比 44%;p=0.23),中位数(IQR)ML-FFR 较高(0.76(0.53-0.86)比 0.71(0.47-0.84);p=0.047)。在多变量调整模型中,ML-FFR<0.8 与 D/MI 之间无显著相关性[风险比 0.82,95%置信区间(0.30,2.20);p=0.25,与性别交互作用。]。在接受 CCTA 和 SPECT 检查的有症状患者的高危队列中,女性的 ML-FFR 高于男性。ML-FFR 与死亡率或 MI 发生率之间无显著相关性,也没有证据表明 ML-FFR 的预后价值存在性别差异。