Poma Adolfo B, Guzman Horacio V, Li Mai Suan, Theodorakis Panagiotis E
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Beilstein J Nanotechnol. 2019 Feb 19;10:500-513. doi: 10.3762/bjnano.10.51. eCollection 2019.
We perform molecular dynamics simulation on several relevant biological fibrils associated with neurodegenerative diseases such as Aβ, Aβ, and α-synuclein systems to obtain a molecular understanding and interpretation of nanomechanical characterization experiments. The computational method is versatile and addresses a new subarea within the mechanical characterization of heterogeneous soft materials. We investigate both the elastic and thermodynamic properties of the biological fibrils in order to substantiate experimental nanomechanical characterization techniques that are quickly developing and reaching dynamic imaging with video rate capabilities. The computational method qualitatively reproduces results of experiments with biological fibrils, validating its use in extrapolation to macroscopic material properties. Our computational techniques can be used for the co-design of new experiments aiming to unveil nanomechanical properties of biological fibrils from a point of view of molecular understanding. Our approach allows a comparison of diverse elastic properties based on different deformations , i.e., tensile ( ), shear (), and indentation ( ) deformation. From our analysis, we find a significant elastic anisotropy between axial and transverse directions (i.e., ) for all systems. Interestingly, our results indicate a higher mechanostability of Aβ fibrils compared to Aβ, suggesting a significant correlation between mechanical stability and aggregation propensity (rate) in amyloid systems. That is, the higher the mechanical stability the faster the fibril formation. Finally, we find that α-synuclein fibrils are thermally less stable than β-amyloid fibrils. We anticipate that our molecular-level analysis of the mechanical response under different deformation conditions for the range of fibrils considered here will provide significant insights for the experimental observations.
我们对几种与神经退行性疾病相关的生物纤维进行分子动力学模拟,如Aβ、Aβ和α-突触核蛋白系统,以获得对纳米力学表征实验的分子理解和解释。该计算方法具有通用性,涉及异质软材料力学表征中的一个新子领域。我们研究了生物纤维的弹性和热力学性质,以证实快速发展并达到视频速率动态成像能力的实验纳米力学表征技术。该计算方法定性地再现了生物纤维实验的结果,验证了其在推断宏观材料性质方面的应用的用途。我们的计算技术可用于共同设计新的实验,旨在从分子理解的角度揭示生物纤维的纳米力学性质。我们的方法允许基于不同变形,即拉伸( )、剪切( )和压痕( )变形,比较各种弹性性质。通过我们的分析,我们发现所有系统在轴向和横向方向(即 )之间存在显著的弹性各向异性。有趣的是,我们的结果表明,与Aβ相比,Aβ纤维具有更高的机械稳定性,这表明淀粉样蛋白系统中机械稳定性与聚集倾向(速率)之间存在显著相关性。也就是说,机械稳定性越高,纤维形成越快。最后,我们发现α-突触核蛋白纤维的热稳定性低于β-淀粉样蛋白纤维。我们预计,我们在此考虑的纤维范围内,对不同变形条件下机械响应的分子水平分析将为实验观察提供重要见解。