Suppr超能文献

使用基于人工智能的模型监测新冠疫情期间的人类情绪

Human sentiments monitoring during COVID-19 using AI-based modeling.

作者信息

Umair Areeba, Masciari Elio

机构信息

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples 80125, Italy.

Institute for High Performance Computing and Networking (ICAR), National Research Council, Naples, Italy.

出版信息

Procedia Comput Sci. 2022;203:753-758. doi: 10.1016/j.procs.2022.07.112. Epub 2022 Aug 12.

Abstract

The whole world is facing health challenges due to wide spread of COVID-19 pandemic. To control the spread of COVID-19, the development of its vaccine is the need of hour. Considering the importance of the vaccines, many industries have put their efforts in vaccine development. The higher immunity against the COVID can be achieved by high intake of the vaccines. Therefore, it is important to analysis the people's behaviour and sentiments towards vaccines. Today is the era of social media, where people mostly share their emotions, experience, or opinions about any trending topic in the form of tweets, comments or posts. In this study, we have used the freely available COVID-19 vaccines dataset and analysed the people reactions on the vaccine campaign using artificial intelligence methods. We used TextBlob() function of python and found out the polarity of the tweets. We applied the BERT model and classify the tweets into negative and positive classes based on their polarity values. The classification results show that BERT has achieved maximum values of precision, recall and F score for both positive and negative sentiment classification.

摘要

由于新冠疫情的广泛传播,整个世界都面临着健康挑战。为了控制新冠病毒的传播,研发其疫苗是当务之急。考虑到疫苗的重要性,许多行业都在努力进行疫苗研发。通过大量接种疫苗可以获得更高的新冠免疫力。因此,分析人们对疫苗的行为和态度很重要。如今是社交媒体时代,人们大多以推文、评论或帖子的形式分享他们对任何热门话题的情绪、经历或观点。在本研究中,我们使用了免费可得的新冠疫苗数据集,并使用人工智能方法分析了人们对疫苗接种活动的反应。我们使用了Python的TextBlob()函数,找出了推文的极性。我们应用了BERT模型,并根据推文的极性值将其分为负面和正面类别。分类结果表明,BERT在正面和负面情绪分类方面都取得了最高的精确率、召回率和F分数值。

相似文献

3
Sentimental and spatial analysis of COVID-19 vaccines tweets.关于新冠疫苗推文的情感与空间分析。
J Intell Inf Syst. 2023;60(1):1-21. doi: 10.1007/s10844-022-00699-4. Epub 2022 Apr 15.

本文引用的文献

1
Sentimental and spatial analysis of COVID-19 vaccines tweets.关于新冠疫苗推文的情感与空间分析。
J Intell Inf Syst. 2023;60(1):1-21. doi: 10.1007/s10844-022-00699-4. Epub 2022 Apr 15.
7
Actionable lessons for the US COVID vaccine program.美国新冠疫苗计划的可操作经验教训。
Isr J Health Policy Res. 2021 Feb 19;10(1):14. doi: 10.1186/s13584-021-00452-2.
8
Willingness of Greek general population to get a COVID-19 vaccine.希腊民众接种 COVID-19 疫苗的意愿。
Glob Health Res Policy. 2021 Jan 29;6(1):3. doi: 10.1186/s41256-021-00188-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验